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ABSTRACT

Equations of Hamilton-Jacobi type arise in many areas of application,

including the calculus of variations, control theory and differential games.

Recently M. G. Crandall and P. L. Lions established the correct notion of

generalized solutions for these equations. This article discusses the

convergence of general approximation schemes to this solution and gives, under

certain hypotheses, explicit error estimates. These results are then applied

to obtain various representations. These include -max-min" representations of

solutions relevant to the theory of differential games (which imply the

existence of the "value" of the game), representations as limits of solutions

of general explicit and implicit finite difference schemes, and as limits of

several types of Trotter products.
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SIGNIFICANCE AND EXPLANATION

Equations of Hamilton-Jacobi type arise in many area of application,

including the calculus of variations, control theory and differential games.

However, nonlinear first order partial differential equations almost never

have global solutions, and one must deal with generalized solutions. Recently

M. G. Crandall and P. L. Lions established the class of viscosity solutions of

equations of Hamilton-Jacobi type and proved uniqueness within this class.

Moreover, several results concerning the existence of this solution were given

by M. G. Crandall and P. L. Lions, P. L.Lions, G. Barles and the author. This

paper discusses general approximation schemes with applications for the

viscosity solution and gives, under certain hypotheses, explicit error

estimates. These results are then applied to obtain various

representations. These include "max-min" representations of solutions

relevant to the theory of differential qames (which imply the existence of the

"value" of the game). In particular, under certain assumptions, the solutions

can be represented as the uniform limit of repeated min-max operations on the

solutions of linear problems. Other representations include limits of

solutions of qeneral explicit and implicit finite difference schemes (with

error estimates), and limits of Trotter products.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



APPROXIMATION SCHEMES POP VISCOSIz"
SOLUTIONS OF HA ILTON-JACOBI EVUATIONS

Panagiotis E. Souganidis

INTRODUCTION

Recently M. G. Crandall and P. L. Lions ([5], also see M. G. Crandall, L. C. Evans and

P. L. Lions [4]) introduced the notion of the viscosity solution of nonlinear first order

partial differential equations. They used this notion to prove uniqueness and stability

results for the Hamilton-Jacobi type equations, in particular the initial value problem

I + H(t,x,u,Du) - 0 in R x (0,T]

(0.1I)

u(x,0) - u0 X) in I

and the stationary problem

N
(0.2) u + XH(x,u,Du) - v in R

N N
where H: [0,T] x f x 3x R R is continuous and Du - (u/3y,...,3u/3y, ) denotes

the gradient of u. The existence of this solution for the problems (0.1) and (0.2) was

established by M. G. Crandall and P. L. Lions [51, P. L. Lions [18), [19], P. E. Souganidis

[201 and G. Barles [M. Moreover recently M. G. Crandall and P. L. Lions ([6]) proved the

convergence of a general class of finite difference schemes to the viscosity solution of

the model problem Iu + H(Du) - 0 in RH x (0,T]

at
(0.3)

u(x,0) = 
u0(x) 

in I?

and gave an explicit error estimate.

This paper discusses the convergence of general approximation schemes to the viscosity

solution of (0.1). In particular, it contains a general theorem which roughly says that

any "reasonable" scheme converges to the viscosity solution of (0.1). Under certain

hypotheses explicit error estimates are also given. (Some of the arguments in the proof of

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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these estimates parallel the ones in [6])) we then use this abstract theorem to establish

several results concerning the convergence of Trotter products and (explicit and implicit)

finite difference schemes with error estimate. Moreover, special representations (mLn-max)

as well as the applications of the viscosity solution in differential games and control

theory -re discussed in connection with the above mentioned theorem.

The statement of the abstract results as they apply to (0.1) is rather lengthy and

complicated. We therefore defer it to a later section. Here we describe a simple version

of these results related to the model problem (0.3) and show how one can use them to obtain

some representations of the viscosity solution as well as the convergence of the Trotter

formulas.

To this end, for p > 0 we introduce a mapping ?(p) BUC(R
N
) N BUC( N)) such

N
that for every u,u e BUC(R

(F) F(0)u- u

(M2) The mapping P + F(p)u is continuous in BUC(RN)

(M3) There is a constant C1 > 0 such that

C**)
*F(p)ul 4 C P + lul

(4) F(p)(u k) -(p)u + k for every k e a

and

(7S) IF(p)u - 7(P)u - lu - ul

Before we state any more assumptions we should remark that, in view of a result obtained by

M. G. Crandall and L. Tartar ([71), (F4) and (PS) imply that 7(0) Is order preserving in

BUC(RN). In particular, if for uv e BUC(EO) it is u(x) 4 v(x) for every x e R",

then

N
F(P)u(x) ( Fp)v(x) for every x e R

(*)BUC(O) is the Banach space of bounded real valued uniformly continuous functions

defined on 0.
(**)For u : 0 + R, lul s sup Iu(x)I

xeO
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Next we make an assumption concerning the behavior of F(p), when it is applied to

N 0,1 N('M
functions u e suc(S f C (a 3 n particular, we have

If u eC, (o, *) then ,(p)u e Cb'(UP) and

IDF(P)ul 4 Invl

(Fe) moreover

IF u- ul ( 2

where C2  is a constant which depends only on Itul.

Finally, we want to assume that, when applied to smooth functions, F(p) behaves as a

"generator". We have

2 N (t)
For every * e Ce(a M

(7
(P )

7 - 0 + H(D#)I * 0
P

as P + 0. Moreover, for each R • 0 the limit is

2 (tt)
uniform in * provided that 1D1, ID 2i 4 R 

)

NOW for every partition P - {0 - t < tI < ... < tn(p) T ) of 10,T) and for

u e Wc(n") define up + 3 by("t)

u 0Px,0) - u ox)

(0.4) Up(X,T) - F(T - t )up (,t i)(x) if T e (t i1,t i for some

(-)(-).(.) C" (0) is the space of (bounded) real valued Lipschitz continuous
functions 4efJnejbjn 0. For u e C0' (0),IDul denotes the Lipschitz constant of u.

kf
(M) C k (0) is the space of k times continuously differentiable functions defined
on 0(Cbkvhieh together with their k derivatives are bounded).

($,) For * : 0 + R such that 9 exist, ID2 - 1 , -
ax 0axa

(tt9) QT v x (0,-r), ir x 10,)
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The theorem is

N
Theorem. Let H : R N a be continuous and assume that for every p ; 0

N N
F(P) : BUC(N) + BUC(R ) satisfies (Fl), (M2), (M3), (4), (PS), (W6) and (M7). If, for

N-
8 BUCc( ) and a partition P of 10,T), u e BUC(QT) is the viscosity solution ofU

0 
T

(0.3) and up QT + a is given by (0.4), then

(0.5) sup - Iu(xt) - u_(x't)I * 0 as PI 0 ( )
(xtleQT

If, moreover, H e c
0
,
1 
(N) and F(p) satisfies

fTher. is a constant C3 > 0 such that for every # e c2 (N)

I |F(P4 - + H(D)li 4 C3 P(l + 1D#1 + ID2 #)
P

0,1 N
then forevery ec ( )

1/2
(0.6) sup Iu(xt) - up(xt)l 4 KIPI(x,tle 

T

where K is a constant which depends only on lu 01 and IDu 01.

Next we describe how one can obtain, in view of the above theorem, the convergence of

N
the Trotter products related to (0.3). In particular, for I - 1,2 let H: R + R be

Ncontinuous. Then for u0 e BUC(R ) we write ui(x,t) - Si(t)u0(x) for the viscosity

solution of

-ui + H (Dl)u 0 in

ui(x,O) - u0 x) in I?

N NFor P ; 0 and u e BUC(3
n
) let F(p)u : R + R be defined by

F(p)u(x) - S 2(PS (P)u(x)

It is not hard to check (and we do so later) that F(p) satisfies (r1), (F2), (M3), (4),

(P5) and (6). Moreover, it is true that F(p) satisfies (M7) (and (PS) in the case that

() For a partition P ( (0 -to < t1 < ... < t n(p) T} of [0,T), IPl max(t - t i

-4-



for i - 1,2 e C S in)) with H1 + 92- In view of the theorem, if, for

u e Bc(U), u e SUC(QT) is the viscosity solution of

!-U + (H + H)(Du) - 0 inIat 1 2 Q
u(x,O) - u (x) in R"

0

and P - {0 = t < t < ... < tn) T) is a partition of [0,T), then, if t e (ti,ti)
0 1 n(P)

for some i = 1,...,n(P),

(0.7) u(xt) - lim (S 2 (t - ti 1 )S I(t - t ) ... S 2(t )SI(tI)u0)(x )

IPii 
2

and the limit is uniform on QT

Finally to indicate how one goes about verifying the assumptions of the theorem we

give one more example concerning a special representation of the viscosity solution. This

result is closely related to the existence of the value of zero-sum differential games as

we will explain later. In particular, for the problem (0.3) let us asme that

n e cO'l (3P) is such that

(0.8) H(p) - inf sup {h(y,z) + f(y,z) p }

yeY zeZ

where Y,Z are subsets of RP R respectively (for some nonnegative integers p,q),

f tx z. e nd h :Y x Z + R are such that

lh(y,z)j, Jf(y,z)l 4 B for (y,z) e Y x z

and for p,q e R" p*q denotes the usual inner product. Then, for p ) 0 and

u e SUC(O?), let F(0)u : " * R be defined by

(0.9) F(p)u(x) sup inf (-oh(y,z) + u(x - pf(ys))}

yeY zeZ

It is rather trivial to check that Pip) : sUC(3 + BUC(RN ) satisfies (F), (F2), (M3),

(P), (PS) and (P6). Here we verify (F). To this end, for * e Cb(3 ) we have

-5-
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P(0)*(x)-4(x) ______________________i )  -  
H(D#(x))l -sup inf {--ph(v3)+(x-fCyoz))-(x)1 + N(D#(x))l =

yeY zeZ

= sup inf {(x
P
f(

y 'z
))_4(x) - h(y,z)} + inf sup (h(y,z) + f(y,z).D(x))I =

yey zez yeT zez

= Isup inf {#(x_° f(v '
z))

-4(x) - h(y,z)l - sup inf (-h(y,z) - f(yz)*D#(x)}I 4
yeY zeZ yey zez

;up sup Ilx-f(v.zll-(x) + f(y,z)-D(x)lIC 4 pID
2
*5

yeY zez

If, for u0 e Buc(3p) and a partition P of [0,T], u e uc(Q-T) is the viscosity

solution of (0.3) with H as in (0.8) and up : 6T+ R is defined by (0.4), then

up(x,t) + u(x,t) as JPJ + 0 and the limit is uniform on if, moreover,
pQT'

u0 e0b (3"), then

lu - upI C KIPI1

where K depends only on lu.1 and M~uY. This result, in the case that

sup inf fh(y,z) + f(y,z).p) = inf sup (h(y,z) + f(y,z).p
yeY zelz zeZ yeY

Nfor every p e i , implies (because of the uniqueness of the viscosity solution) that the

differential game associated with the above H has a value.

The paper is organized as follows. Section 1 recalls the definition and some

properties of the viscosity solution as they are stated in (4] and (5]. Moreover, it

includes the existence results and some further properties of the solution as they are

stated in (1] and (20) as well as the general assumptions made on H. Section 2 is devoted

to the abstract convergence theorems. In particular, two theorems are given. The first

deals with schemes which satisfy an (F7) type assumption (such an assumption is identified

as a "generator' property). The second theorem corresponds to schemes which do not satisfy

such an assumption directly. In section 3 we obtain several min-max representations of the

viscosity solution of (0.1). Section 4 contains a short discussion about two players zero-

sum differential games. With the help of sections 2 and 3 it is shown here that the value

of such differential games exists. Section 5 is devoted to the convergence of several

-6-



numerical schemes (explicit and fully implicit finite difference schemes) and given error

estimates. In section 6 we establish the convergence of several types of Trotter

formulas. Detailed references for all the ahove are given in each section.

finally we would like to thank Professor L. C. Nvans for suggesting some of these

problems and especially Professor N. G. Crandall for helpful discussions and good advice.



SUCION 1

We begin this section by describing the assumptions on H. Throughout this discussion

we will assume:

H e C( [0,T] x it X ) is uniformly continuous on
(Ni)

10,T] x RN x [-RR] x BN(0,R) for each R > 0
(M

and

f There is a constant C > 0 such that

(H2) C = sup IH(t,Xo,O)I < -

(x't)eQT

Moreover, we require some monotonicity of R with respect to u. More precisely, we

assume:

For R > 0 there is a YR e R such that

(M3) H(t,x,r,p) - H(tx,s,p) > YR(r - a)
N N

for x e a , -R C sr r- CR, 04 t, T and pe Nl

Finally, we will have to restrict the nature of the joint continuity of H. The following

Lipschitz-type assumption will be used

For R > 0 there is a constant CR > 0 such that

(N4) IH(t,x,r,p) - H(t,y,r,p) 4 C R(I + IpI)Ix - y,

for t e [O,T], Irl 4 R and x,y,p e ?

Next we state some assumptions on H which we are going to use later in addition to

the above. In particular occasionally we will assume:

For R > 0 there is a L R > 0 such that

(H5) IH(t,x,r,p) - H(t,x,s,p)l L RIr - s
N N

for x e R , -R sC r4 R, 0(t-T and pe Nt

() (xo,R) - (x e ft : Ix - x 0 -c R)
NO)

t-8



For R > 0 there is a NR > 0

(H6) IH(t,x,r,p) - H(t,x,r,p)l 4 NR(0 + Ipilt - ti

for t,t e [0,T], Irl 4 R and x,p e aN

and finally

For R > 0 there in a MR > 0 such that

(H) IH(t,x,r,p) - H(tx,r,q) l 4 MR p - qj

for t e [0,T], x e RN ,  Irl 4 R and p,q e 0 with jpj,IqI 4 R

We continue now with the definitions of the viscosity solution of (0.1) and (0.2). We

have

N N
Definition 1.1 ((41, (51). Let H e C(O,T] x R x R R ). A function u e C(QT) is a

viscosity solution of

au
t + H(t,x,uDu) = 0

if for every e e C (QT

(1.1) if u - * attains a local maximum at (x0 "t0) e QT" then

a- (x0 ,t0 ) + H(t0 ,x0 ,u(x0 ,t0 ),D#(x 0 ,t0 )) 4 0

and

(1.2) if u - * attains a local minimum at (x0 ,t0 ) e QT' then

at (xOlto) + H(toXou(xoto),D(xoto)) ) 0

If, moreover, u e C(Q T ) and u(x,0) - u0(x) in 0
, 

we say that u is a viscosity

solution of (0.1) on QT"

Remark 1.1. Definition 1.1 is a combination of Definition 2 and Lemma 4.1 of [4].

() C]( ) is the space of infinitely many times continuously differentiable functions of
compan)support).

-9-
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N X N
Definition 1.2 ([4], [5]). Let H e C(S R ~x R I > 0 and v e c(ftP). A function

N j
u e c(a ) is a viscosity solution of (0.2) in 10, if for every # e c cm!

(1.3) if u - # attains a local maximum at x(O e R", then

u(x 0) + XH(X0 ,u(x 0 ),D1(X 0 )) 4 v(x 0
and

(1.4) if u - * attains a local minimum at x0 e 0~, then

ii(x 0) + XH(X 0,u(x 0),D(x 0)) > v(x0

Next ye state the theorems about the uniqueness and existence of the viscosity

solution of (0.1) and (0.2) as well as some other important results of (4], [5], [1 and

120] concerning this solution.

(*)N N
Theorem 1.1 ((1], (20])(). Let H : 0,T] x R R ax R + R satisfy (H11), (We2) (M1) and

(HO4. For every uO e BOC(k11 ) there is a T - T(lu I) > 0 and u e BUC(QT ) such that

u is the unique viscosity solution of (0.1) on Q-If, moreover, Y R in (W1) is

independent of R, then (0.2) has a unique viscosity solution on Q Tfor every T > 0.

Theorem 1.2 ([1], (20]) (*. Let H R I x R x R N R satisfy (Hl), (H2), (H13) and (H14).

"or every v e auc(aUN) there is a X0 . X (Ivl,i R such that, for every 0 4 <X0

(0.2) has a unique viscosity solution u e BUC(P!4 ) in 4

Proposition 1.1 (1.3 [5], 1.11 (5]). (a) Let ui e c(QTr) be a viscosity solution of

3u
at + H(t,x,u,Da) 0 in

t 1T

If for * ec I(Q ) with f*.o and * ecC(Q T

(CThe uniqueness of bounded uniformly continuous viscosity solution was proved by M. G.
Crandall and P. L. Lions in (5].

-10-



(1.5) *(u - 9) attains a positive maximum at (xo0 t0  e Q?' then

(u(xoto) - f(xo,to) t (x ot 0 ) + o' o

+ H ~Ulo0 tO } -t()o - -

+ toXofUlXoft) UNA)(Xo9 to) 0 )D(Xot O ) + D(xo,tol) C 0

If for eCI(QT) with 0 and * e cI(QT)

(1.6) #(u - 4) attains a neqative minimum at (x0 ,t0 ) e QT, then

(U(Xoto) - *(Xo,to)) +

*(x0,t0) (x 0 "t0 ) att at )

U(xo ,t O ) - 4'(Xo,t O)

+ H(t 0 ,x 0 ,u(x 0 t), - (x,t) A (x 0 1 t0 ) + D(x 0 ,t 0 )) ) 0

(b) Lot T , 0, y e a and g,h e C([O,T]). Suppose that, for every

n e C ((0,T)), if g - n attains a strict local maximum at to e (0,T), we have

n'(to) + Yg(t ) h(t 0
Then for 0 ( a ( t 4 ?

t

(1.7) eytg(t) < *y1 g(s) + f eyTh(T)dT
5

Usmark 1.2. The assumptions on q in the above proposition are equivalent to aaying

that g is a viscosity solution of

g' +YqC h

as it is explained in 141, IS].

Proposition 1.2 (V 1. I5], IV 1. I51). (a) Por C > 0 let u e Cb(QT) be a solution

of I -A- c- + t,x,uCDu 3 = 0 in Q
at C 'I £T

uC(x,O) - uoc (x) in I?

au au
with So i e CQT). Assume R * R uniformly on (0,T) x R

N x (-R,R) x N (0,R)at'Sacx T ax

-11-



for each R > 0. If C * 0 and u + u locally uniformly in QTP then u e C(QT) i
n n

a viscosity solution of
32 + H(t,x,u,Du) - 0 in

If, moreover, u C u0  uniformly on R N  and u C u uniformly on Q6T then u is a

n n
viscosity solution of (0.1).

(b) For C > 0 let u e c2(R N ) be a solution of

- Au. + + )H (x,u ,Du ' - v in R
N

Assume H * H uniformly on R
N 
x [-R,R] x N(0,R) for each R > 0 and v + v

uniformly on 0. If e + 0 and u + u locally uniformly on 1?, then u e C(RN) isn £
n

a viscosity solution of (0.2).

Proposition 1.3 (1.2 (51). (a) Let um e c(Q T ) be a viscosity solution of

+ H(t,x,u,,Du - in 

u m(x,0) - u O(c) in a

Assume H * H uniformly on [0,T) x 3 x !-RR] x BN (0,R) for each Rt > 0. If u M u

locally uniformly in QT' then u is a viscosity solution of

au + H(tx,u,Du) - 0 in

If, moreover, u 0 m + u0 uniformly on R
N  

and uM + u uniformly on OT then u is a

viscosity solution of (0.1).

(b) Let u. @ C(R?) be a viscosity solution of um + XH m(xu m Du m v in It.

N
Assume H + H uniformly on R x I-R,R] x N (0,R) for each R > 0 and v * v

uniformly on R". If u m + u locally uniformly on FI
N
, then u e C( RN) is a viscosity

solution of (0.2) in F?.

The following results of 201 give estimates on the "off the diagonal" difference of

the viscosity solutions of two problems of the form (0.1) or (0.2). Moreover, they imply

-12-



important a priori bounds on the norm, the Lipschitz constant (in the x variable) of the

solution u and the differences lu - uoI, lu - v. To this end, let 0 e C (a ) be such

that

0 4 B 4 1, 0(0) - 1, IlOB r 2, ID28l 4 4
(1.8)

B(x) - 0 if lxi > 1

Moreover, for C > 0 let B£ x) B(. Finally, for a function f : 0 R 3 let

(1.9) W f(r - sup If(x) - f(ylf

Ix-yi'r
xyeO

denote the modulus of continuity of f. We have

Proposition 1.4 (1.4 (201). Let u,u e DUC(T) be viscosity solutions of the problems

+ HltxeuDu) - 0 in T (tx,,D;) - 0 in
and

(x,O) - u(X) in R u(x,O) - uo(x) in a

respectively, where u 0 ,u 0 e BUC(t
N ) and H9, : 10,T] X R

N  
x RR + R satisfy (HI) and

(013) with the same constant yR ( 0 for each R > 0. Let R0 - max(lulIEuI). if, for

R ) RO, C > 0 and Y YR' D ,A are so that
R CC

D n {(x,y) e m x N Ix - y c £1and £

A, - (t,x,y,r,p) e 10,T] x ? x R N ,

(x,y) e Dc,lrI 4 min(IuU,IvIl,lpI < min6 - 1,LII

vhere

L - min{ sup IDu(.,T)I, sup IDu(.,T)I)

0CTICT OCT(T

then for every T e (0,T]

-13-



(1.10) sup flu(x,T[) - -(y,T)I + 3Re- 0 e(x y) 4
(x,y)eoy

-a sup flu 0 (x) - u0 (y)l + 3 (x - y)) +
(x, y)e

+ a -YT sup IH(t,x,r,p) - H(t,y,r,p)[
(t,x,y,r,p)eh 

Proposition 1.5 (1.5 (20]): Let H : [0,T] x R x Rx I? R satisfy (RI) and (W3) with

YR 4 0 for every R > 0. If, for u0 e aUC(m), u e suC(i T ) is the viscosity solution

of (0.1) in iT' let R > lul and 1 - Y" The following are true

(a) If H satisfies (H2), then for every T e (0,T)

(1.11) lu(,T)l 4 0 (TC + lu01)

where C is given by (H2)

(b) If H satisfies (N) and u(e, C Cb ( for every T e 10,T] with

L - sup lDu(*,T)l, then for every T e [0,T]
0(T(T

(1.12) IDu(-,T)l e -YT(L0 + TC R(1 + L)])

where L0 - IDu1 and CR  in given by (H4). Moreover,

(1.13) L < (e (L0 + C)

(c) if u. e C'I( N), then for every T e [0,T]-T
(c I u •C b  a

(1.14) IU(T) - u 0 1 4 e sup _ I(t,x,r,p)•
(x,t)eT

Ir C(u0I T

IpICDu 0I

0,1 N(d) If, for every T e (0,T], u(*,T) e cb  (R) and sup IlDu(,T)I 4 L, then

O,1 - b<T
u e Cb (QT) and for t,s e [0,T]

-14-



(1.15) Iu(&,) - u(.,s) p - 1e
"
'V sup - IH(t,xr,p)l
(xt)eQ
Ir (luv"

Propoeition 1.6 (3.3 (201). Let u,u e oUcC() be viscosity solutions of the problems

u4 +X(x,U,Du) v in 0 and ; + ki(x,u,Du) -; in I?

respectively, where Ui : a' - i x it - i satisfy (Hi) and (W3) with the same constant

YR for each R > 0 and v,v e DUC( N). Let U - max(lulluI). If for R ) N0, E > 0

and - YR D ,A, are so that

D, ((x,y) e a X 3 , jx - yI C )

and

At { (Z' y*~p V a P) 3 0 3 x A? s (x, y) e

Irn C min{UulIuI1, pI C minj - R 
+ 1,LI

where

L " nin(lDuI,IDuli

and, moreover,

I+ Xy ) 0

than

(1.16) sup {Iu(x) - u(y)I + 
3R6 lx - y)1 C

$ - UP {Iv(x) -(y)I + 3R(1 + Ay)6 (x - y)) +

A(xy)eDC C

- sUP IR(xmp) - i(yS,p)
I + Ay'1 ¥(x'y's,p)eA C

Proposition 1.7 (3.4 (20)). Let N i 3N x RX x R R satisfy (1) and (113). If, for

v ev C(Nt), u e DUC(lt) is a viscosity solution of (0.2) in F?
, 

let R > lul and

' - R if I + Ay ) 0, the followinq are trues

-. 15-



(a) If H satisfies H2), then

1
(1.17) lul (AC + Ivl)

1 + A'r

where C is given by (H2)
"0,111N nd 0,1N

(b) If H satisfies (R4), v e C 1 (R N) and u e c,  (AN), then

(1.18) IDul 4 1 [1DO + .CR(1 + IDul)]

where C R  is given by (H4). Moreover, if 1 + X(y - C ) > 0, then
1H

(1.19) IDul 4 1 + A(y - C ) CIDvl + XC

0,1 N
(c) If v e C b  (R) then

(1.20) u - vi Eup IH(x,r,p)t
1 + Ay -FN

xeR
lrl~lvl
II~l lDvi

We conclude this section with some results concerning the behavior of the viscosity

solution of (0.1) or (0.2) in the case that H satisfies (4) and u 0 or v e C (R
b

respectively. We have

N N
Proposition 1.8 (2.2 (20), 4.2 [20]). (a) If, for H (0,T] x R x R X R + R

satisfying (1), (2), CM3) and (H4) and u0 e C
0  N

- b0, 1 -

Theorem 1.1, viscosity solution of (0.1) in QT , then u e cb T
). 

Moreover, the

Lipschitz constant is estimated by Proposition 1.5.

NN
(b) If, for H : x Rx R R satisfying (W1), (2), CM3) and (H4) and

v e O' ( ), u e sUC( ) is the, provided by Theorem 1.2, viscosity solution of (0.2)

in R
N
, then u e Cb01 ( ). Moreover, the Lipschitz constant is estimated by Proposition

1.7.

-16-



SECTION 2

In this section we deal with the convergence of general approximation schemes to the

viscosity solution of (0.1). moreover, under certain assumptions explicit error estimates

are given. in particular, we prove two theorem, which, in the applications we examine

later, lead to the same conclusion, in the case that R is independent of ui. The first

theorem in concerned with schems, which satisfy a generator type assumnption (like (F7),

(MS) in the introduction). In particular, we have

NN
Theorem 2.1: (a) For H s [0,T] X R X R x N + R satisfying (R1), (R2) (with constant

C), (HS) (with constant Z independent of R) and (HO, (M6), (H7) (with constants

0,1 N 0,1 -
C3,NR,M9  respectively for R > 0) and for u. e c b (a ) let u e c b (Q be the

viscosity solution of (0.1) in i . For (t,P) e K - {(t,p) e [0,T) X [0,0 ]:0 4 P r. ti

whee P-~Clu) 0, et ~tp,**) 0,1 N 0,1 N 0,1 N
0hr p 0 U0) > N, le :tfo)tCb (R) xCb (R) *C (R) besmuch that

for every u,u,v,v e C b (R

(Fl) F(t,0,U,v) - v.

(P) The mapping (t,P) + F(t,p,utu) is

continuous with respect the I I norm.

MP) F(t,P,u,v + k) - F(t,pou,v) + k for every k e a.

(P4) *F(t,p,u,u) - ul 4 C where C - C 00IuII) )0 0.I 1 I

There exists an r > 0 and L, > 0 such that if v(x) < v(X)

N
for every x e a, then for any y e m, such that

(F5) Iv(y + W) - v(y + ;)I, 1;(y +w ;(y + ;)1 4 Liw ; I

for every w,w e B N(O,pr), it in

F(t'p'u'V)(y) 4 F(t'P'U'v)(y)

* where L $ Up lVU(*,T)I and L-max(L1 ,L) + 1.
(T(CT

-17-
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There exists a constant C2 > 0 such that

PC 2

(t6) IF(tP,U,u)I 4 2 (Iut + pC2 )

provided that IDul 4 .

There exist constants C3, C4 > 0 much that

T(C 3+C4)
(IDu01 + TC) 

(M7) and

S(C3+C 4 )

IDF(t,p,uu) ( (IDul + pC4 )

TC

provided that lul 4 * (lu01 + TC2 ) and IDul 4 L

and

21 N
For every *e b (RN ) and x e RN  

such that ID#(x)l < L + 1, it is

(8) + H(t,x,u(x),D#(x))l 4 C5(I + ID#l + ID 2I)pP

where L sup IDu(*,T)I and C - C 5(luI,IDulL).

For a partition P = [0 = t0 < t I < ... < t - T) of (0,T], let up T R be

defined by

Up(x,0) = u x)
0

(2.1) p(x,t) - F(t,t - t -I,up(*,ti-l),up (.,ti_1))(x)

if t e (ti-lti] for some i - 1,...,n(P).

Then there exists a constant K, which depends only on lu I and I mU, such that

(2.2) lu - ul C KIP 1/ 2

p

for tPt sufficiently small.

N N
(b) For H : [0,T] x R x R x R , R satisfying (HI), (H2), (4) (with constant

CR for R ) 0) and (HS) (with a constant . independent of R) and for u0 e BUC(O)

let u e SUC(QT) be the viscosity solution of (0.1) in QT For

-18-



(t,P) 0t = (t,P) e (0,T] X (0,0] , 0 4 t 4 P1, where P. - P0 (lu 01) > 0, let

(t#P,,) I BUC(O) X WC(V?) * BUC(3") be such that, for every U, ,v,; e BC(-"), it
0,1(), (3 )( )(o u•c0,1[iN))edmroe

satisfies (Fl), (F2) (for u e (I?)), 3), (74 (for u e c (a N and moreover
Cb b

There exists a constant C6 ) 0 such that

(r9) 3 (t,P,u,v) - P(t,,a,;;)I ( iv - ;I * pC6 lu - ;,

provided that u,v e Cb

f There exists a constant C7 ) 0 such that

(710) ?
( tF(t,pu,u)l - a (lul + PC7 ).

If u e Cb (I?), then F(t,p,u,u) e Cb (it) and

( C8+C9 )

(Fl) ID?(t,P,u,u)I C (IDUI + PC9 )

where C. ) 0 and C9 - C9(1ul) ) 0

and

For u e Cb l(it, and ei C ,iN

(F12) (~~r(trprUr#)- + (,,, 0a o
(F2 P a

Moreover, for each R > 0 the above limit is uniform

on u,#, provided that lul,lDul,1D1,ID2 # c R.

If, for a partition P of [0,T], u. R * in defined by (2.1), then

(2.3) lur - ul 0 of 1P7 + 0

Before we give the proof of the theorem we discuss some of its assumptions. In

particular, since non-expansive mapping* commuting with the addition of constants are

order-preserving and vice versa (N. G. Crandall and L. Tartar (71), (FS) is implied by (M3)

and

(F13) IF(t,p,u,v) - F(t,P,u,v)t ( 1v - vI for upv,v e C ,(i

-19-



Similarly, (PS) together with (73) imply that, for fixed (tp) and u. P(t,p,u,*) is

0, iN
non-expansive on fu e Cb (R ) : IDul 4 t + 1). in several applications we are going to

have (F3) and (13), in which case the conditions on u in (6), (F7) are irrelevant.

Moreover, instead of (Fe), occasionally we will assume

0,1 N 2 N
Forevery u eCb () and #eCb(a)

(F14) 1
t fp fu

, 
)  

- +H(t,',u,D#)I e C10 (1 + IDO# + ID 2l)p

P 0

where C 10 ' C 10 (IullDul)

which of course implies (PS). Finally, we want to remark that the important hypotheses in

the theorem are the ones on F. In particular, in part (b) one can assume a more general

condition than (H4) and the result is still true. However, in applications, most of the

times, one needs (H4) to check (F11) and (P12). Moreover, the assumption that the constant

in (H5) is independent of R has been made only for simplicity. In fact in the

applications one can always reduce to this case.

Proof of Theorem 2.1. (a) We begin with a lemma, which records some of the properties

of UP. In particular, we have:

Lema 2.1. For a partition P [ (0 - t ( ... < t T) of [0,T] and
0 n(P)

u0 e C (it), let up : + i be defined by (2.1). The following are true:

(a) For every T e [0,T]
TC

(2.4) |u (*,T)I 4 e (TC + lu 1)
P 2 a

and

,1 N TC C3+C4)(2.5) Up(*,T) e CI (A and IDuP(.,T)l ( e tEDu01 + T

Moreover, if T e Cti l,t I for some i - 1,...,n(P), then

(2.6) PU( ,T) - P (,ti lI )1 C rI - ti_ )

TC
where CI .C1Ie 2(u01 + TC2' )

(b) up e BUC(QT

-20-



Proof. (a) If T 6 [O,t ], then, since IDU0 I ( L,

TCC
lU p( T)I 4 0 (1 u0 1 + cc2 )

and

T(C 3 4C4 (1U01 + TC4)

A simple inductive argument, in view of (r6) and (F7), implies (2.4) and (2.5). Moreover,

if we choose C1  c 1 (e I 2 (lu 0 1 + C2), 
), than (2.6) follows immediately from (2.41,

(2.5) and (r4).

(b) This i obvious from (a), (F2) and the definition of up.

We continue now with the proof of (2.2). It is obvious that it suffices to show that

there exiete a constant X10 which depends only on i IU and |DU01, such that

(2.7)± sup (eLT( (x,T) - u(xr))
t
) C i1ipi12 ()

for IPI sufficiently small. Here we prove only (2.7)
+ 

since the proof of (2.7) is

identical. To this end, let MP be defined by

MP sup . EeLI (u (x,T) - u(x,r)) •
(xT)eQ

without any loss of generality we say asame

(2.8) HP ) 0.

We know, in view of lema 2.1(a), that there is an R1 > 0, independent of the partition

P, such that

For R *mx(Riut) and e - IP 1/ 4 , let * a x It x 10,T) x (0,r) a be defined by

(M) r+ max(r,01. r"- mx(-r,0)

-21-

- ... . .... .. . . .. ._. . ._ % . . - -



rTwg

-2

*(x,y,T,S) - e (u~Px,T) - uly,l)
+ 

+

+ 3(R + 1)B (x - y) + 3(R + 1)y (T -) -T Np

where Ba(', - By() -nd " with

B e C(R"), 0(0) " 1, 0 B 1, ID81 4 2, ID2 sl 0 4, O(W) - 0 if 1l > 1

(2.9) O(w) - 1 - Iwl
2  

for Iwl and

B(w) 1/2 for Ivl > 2

and

Y e C (R ), y(O) - 1, 0 y 4 1, Io 1 4 2, ID 2 I C 4, y(t) - 0 if Itl > 1

2(2.10) y(t) - I - t for Itl - and

Y(t) < 1/2 for Iti >

Since : is bounded on R x R x 10,T] x [0,T], for every 6 > 0 there is a point

N N(xitylITle0) It x Rt x [0,T] X 10,T) such that

#(Xlfyl,Tllt I) > sup O(X,y,T,B)-

(x,y,T,s)eR Rx 1O,T] [0,T]

N N 2
Next choose c e C0 (3 x I R) so that 0 4 C 4 1, CVx 1 ,y 1 ) 1 1, IO1 < 1, ID2 C1 and

N N
define T R x R x 10,T] x 10,T] + R by

Y(x,y,T,s) - O(x,y,T,s) + 26C(x,y)

Since T 4 ' off the support of C and

(xlYlTlS1 ) O(Xlyl,TlS 1 ) + 26 >

> sup 4(x,y,T,s) + 6

NN

Cx,y,t ,s)e xR nx![0,T]x(0[,T]

there is a point (x 0 oy,T 0 ,s 0 ) e RN x RN x [0,T] x [0,T] such that

-22-



(2.11) Y( 0 ,yT0,s0 ) ) T(x,y,r,s) for every (x,y,,s) e R x R x [0,T) x [0,T]

1

Moreover, for S < in(!-, (,),x0 ,Y0 ,r0 ,.0 ) has the following proportie

Ix 0 - Y I C, - a 0 C, upl' O ) - u(yo,e O ) > 0, lxoY0 o,Tos 0 ) > 0

(2.12) X - YO I (L + 28)e
2

and (T9- a0)2 IX2-Yo2

Yr(T 0- 0 0 - 2 (X 0-  - 2

£ £

To see (2.12) observe that, if for 6 < 1/2 either Ixo - y0  > C or

IT - I 1 C, then (2.11) implies

2(R + 1) + 3CR + 1) + 26 ) T(x0 ,Y0 ,T0 ,s0 )

T(x,x,T,T) 0 e-LT (u (x,T) - u(x,T)) + 3(R + 1) -

and therefore
1

2 M. + R* 1

which is a contradiction. Moreover, the above argument also shows that

Tlx0,Y0,T0,e M p + 6(R + 1) > 0

Next observe that

.,TO+cO
2 +U

e (ulxo,.r ) N T uYo 1 1s)) + 28 o > 0

therefore for 8 < - M
8 p

e (U (XoTo)_ u(yoo))+  Mp > 0

i.e.

uP(XoT O ) -U(Yof, 0 ) > 0.

Moreover, (2.1) again implies that

-23-



2(R + 1) + 3(R + 1)0C (x 0 - y 0 ) + 3(R + 1) + 26A

) ¥(x 0 ,Y 0 ,r 0 ,s 0 ) V(XX,T,r) 5 Mp + 3(R + 1) + 3(R + 1)

therefore, since 6 < 1/24

1 26 1

(x0 - Y0
] 
> 3 -3(R + 1) 'i

i.e.

(2.13) 
BN(x0 - y0) = 0  2 Y0 1

2

Similarly, we have

2(R + 1) + 3(R + 1)Y C(T - 0 ) + 3(R + 1) + 26 >

> T(x 0 ,y 0 ,T0 ,8 0 ) > V(x,x,T,T) > I M + 3(R + 1) + 3(R + 1)

and thus

- 012IT 0  s o 0..'-

_E
(2.14) Cr(TO  s o ) = 1 - 2

£

Finally, observe that since

Ylx 0 ,Y 0 ,T 0 ,s 0 ) Y(X,y,T,S)

and

uP(x 0 ,r0T - u(yl0 ,s 0  > 0

Y0 is a minimum point for the mapping

y + e uiy,s0) - 3(R + I)E (x, - y) - 2
6 

(x0,y)

therefore for every y e R it is

3(R + I)0£ (x0 - y) + 26
(x0 ,Y) - 3(R + 1)0 C(x0 - y 0 ) - 26C(x 0 ,y 0 ) 4

4 e 200(u(y,s 0 ) - u(l0S) e 200Llx 0 - y01 f 6(R + I)Lly y 01

-24-
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But this implies that

I-3(R + )D
6
C (x 0 - Y0 ) + 26DyC(x 0 ,y 0 )I 6cR + M)L

therefore, in view of the choice of 4 and (2.13),

Ix0 - YO
I 
f (L + 26)e2

There are several cases to be considered. These are: T 0 ) 0 and s o 0, 0  -o 0

and a 0 0 and T0 > 0 and s >0. We beqin with the case T0 > 0 and 0 0.

lot case. T > 0 and s. - 0

From (2.11) and

Y(x 0 ,y 0 ,T0 ,0) > Y(x0 ,Y0 ,0,0)

in view of (2.12), it follows that

2

uP(x0 ,T0) - U0 (y0 ) + 3(R+1)
0 Cx, - y0 ) + 3(R+1)(1 - 2) + 26C(x 0 ,y0 ) P

£

> T(x 0,Y 0 ,t 0 ,0) ) u0(x) - u0 (y 0 ) + 3(R+1)8 C(x0 - y0 ) + 3CR+1) + 26t(x 0 ,Y0)

Therefore

2

3CR + l)tu (x0 iT - u0 (x 0 )I + 3R + t1(I - To) ; 3(R + 1)
£

But, in view of Lema 2.1(a), we obtain:

2
0'~

,2 1 0

and thus

(2.15) 
T0 C c 

2

where C is a constant which depends only on lu 01 and IDuoI and is given by Lema 2.1

(a). Then again (2.11) implies

tuP(x 0 ,T0 ) - u0 (x0 )1 + Iu0 (x0 ) - u0 (y0) + 3(R + 1) + 3(R + 1) + 26 )

) Y(x 0 ,Y0 ,T 0 ,0) ; .1 N + 3(R + 1) + 3(R + 1)

In view of (2.12), (2.15) and Lema 2.1(a), we have

(2.16) Rp 4 2[(C 1 )2 + LtDu0 Ile 2 + 46(c + 1)
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2nd case. To - 0 and a0 > 0

From (2.11) and (2.12) it follows that

2

u0(x0 1 - u(Y 0 ,a 0 ) + 3(R + 1)B(x 0 - yO
) 
+ 3(R + 1)(1 -- ) + 268(x 0 ,Y0 )

) T(xoYoo1 ,SI ) TlxoYoOO) )

Su 0 (x0 ) - u0 (y0 ) 3 + 1( 0 (x0 - y0 + 3(R + 1) + 26C(x0 ,Y0)

therefore
2

3(R + 1)u(y0,a 0) - u 0 (y 0 )I + 3(R + 1)(1 - -0) > 3(R + 1)
£

But, since u e C O ' 
1(T1 with Lipschitz constant I~ul, we have

2so

202--C IMuleo

and thus

2
(2.17) so IDu C

Then again (2.11) implies

lu0 (x - u o(y)I + lu0 (y) - U(Yos 0 ) + 3(R + 1) + 3(R + 1) + 26 )

ST(x 0,y0 ,o, 0 ) M + 3(R + 1) + 3(R + 1)

and therefore
22 2

(2.18) Mp e 2(IDul + LIDu 0)e
2 + 46(c 2 + 1)

3rd case. T > 0 and a > 0
00

Itfollows for (2.11) and (2.12) that s o  is a minimum point for the mapping

-L(T +s)
9 • 0 u(Y0,s) -3(R + l)yE(T 0  8) + 9T Np, therefore for a e 10,T] it is

2 0 uy0,a) + a -*~ +4T .

-26-
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so
3(R + 1)Y6 (To -0 - 4T MP - 3(U + llytCr 0 - s 0 1 4TjMP 4

"C020 +uN0s) - • 0  0 0 ulYOs 0 ) (

4-(I + IDnI)IG - a~ 1 4 6(R + 1)(&' + irDuIis - a 1

But then, in view of (2.10), we have

6(R + 1) -0 60 R I6 ( + I DO) + 6-C( 1 (J2 + IDE +c 2 2( 4T 2 2

and thus

(2.19) IT0 - o ("1 + IDul + 1 _ 
2

Next observe that (x0 T0) e T is a point where 4(u - ) attains a positive

maximum and (y0s0 i e ts a point where *(u - i) attains negative minimum where

L-T+0

(x,) a 2 0

LLT+s +La Ls o )

2 ~0 2 0

*Cx,r) - u(y0 ,0 ) - 3R + i)e Bc(x 0 y0 ) + 3(R + 1)e YC -( -

S+

L (T+s 1  (T +0 L( 0

- 28e ¢(x'y 0 ) + 4T I4 •

( 2.20) iL ( P0a, e

(ys) -27

x 0 1 T 0 ) (( o i)
*Cy,s) = UF0# 0 C +4 3CR 4. 1)e B Cx 0 - y) 4. 3CR +. 1). 4 (s 0 - s

f(T 0
+.s) 4. s f( 0 +s)

4. 25 e 1(x0 ,Y) 4 e

T'his observation, in view of Proposition 1.1 (a), implies that

-27-
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0 CC (u(Yo- i(y0 ) + ) 3(R + 1)e 0(0 0 (x0 -YO
)

- , +
+ 3(R + 1)2 0 €T 0 s0 )  3(R + 1)e 2 T 0 0 o ) +

"(T (00e)1 T0e

(T O  +8 -CT +-
+L6CXOY Ta 0 0 1 a20 0 +

2 0 2 0• 0 + -(s0,y0,u(yO's0)'r (y0,s

2 4T p 0 0 0 0

i.e.
(T0 +) .2o+8o

I Ce 2 0  + 3VR + I)e 2 yC t - a

T P £0(T 0

4 (U(Yofs O) - UN(xoTo)) + H(soyou(yoso),D$Cyo,o))

and, since T0 e (t l-,t I for some i = 1,...,n(P), also that

-L (oti-

(2.22) upl(x,ti._) 4 *(x,t i_) + e 2 0 (Up(X0 ,T0 ) - f(x0 ,T0 )) for every x e R
N

Moreover, in view of (2.9), (2.10), (2.11), (2.20) and the choice of (, the following are

true:

I1*Cx0 ,t_ 1 ) - D*(x 0 ,T0 )I 4 E IDx 0 ,T0 )IIPI

(2.23) Ir-tC )I C 6(R + l)eLT(
1 + 6)

ID 
2 
*(t 1 )I ' 12(R + 1)eLT(!j + 6)

£

Finally, during the proof of (2.12) we established that

-T +9 lT +2 o

fDi(y 0 ,s0)f = 1-3(R + I)e2 0 0 (x0 - YO + 2Ce Dy)CX0,y0 ) L

and thus

(2.24) ID*(x 0 ,T0 )1 < L + 1/2

-28-

, I. . ... . + : ,



for 8 < 4
-  

since

-(T +80 )

Df(X0 1r0 ) - IC(Y0 ,s0) - 26e 2 (Dy(X 0 ,y0 ) + DCx 0 ,y0 ))

Next observe that, if w,w e B (0,(C 0 - ti )r) (where r > 0 is given by (F5)),

then

(x + W,t 1_1) - (x0 + ;,t •)

4 iWx 0 + Wvti 1 ) - *(x0 + ;,ti_) - D*(x0,ti 1 )C( - w)1 +

+ i(1*(xo,ti . ) - D*(x0 ,T0 )),(w - ;)I + ID(x 0 0 )f -;)1

therefore, in view of (2.9), (2.23), (2.24) and the choice of C,

(x 0 + w,ti_) - *(x 0 + ;,ti-I)I <

(12('r - t )r(1- + 6 )eLT + L + 1/2)IPI + L + 1/2)1w - ;I

1/4
So, since C - PIl/, if 6 < 1 and IPI is so mall that

(2.25) I 1/2(12r + IPI l/2)LET + L + 1/2)IPI 1/2
) 
< 1/2

then

Xo 0 + w'ti_) - Ox 0 + ;,til)I < L Iv - ;I

Moreover, and since in view of Lemua 4.1 (a)

I~ (-,t Ill ( L
IuP ( ti-i )

it is

iup(x 0 + w,ti.I) - Up(x 0 + ;,ti-I)I < E Iv - ;I

and thus (M3), (F5) and (2.22) imply that

Up(X0 ,TO) - F(lO, O - t,.1,Up(*ti I),up(.,ti 1))Cx 0 ) (

-(T -t

< F(T 0 ,T0 - ti- ,up(. ,ti- ~),*(,ti lM(x 0) + 2 a i-I (up(x0 ,T0) - X0T0

Therefore we have
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F(tT 0 - tiiUp(lti -*(,ti O)( ) - -

T0 -ti-i

+ (x
0

t ii-I *(X0 ,T 0) ( 2 0i 1- 1)(Upcx0 .T0 ) -l(x 0,T 0 )

T0 ti-i 0 -ti-I

But since

L (

e - 4 .L P
T -t 2 8
0 i-I

2L L
0 < u P NIT 0) *(xO 0 0 = e ' F(x0 ,yo,T0 ,S 0 4 9(R + e

and

*CX 0 t~
1  

*(x 0,r0  1 (T + 0 )

0 -t (-1Me200 + UY,0 *XT)+
T0 ti-i 4T p 2(uys 0 - (,t)+

+ E(L- + (6(R + 1) + 1 + + 3(R + 1) TP

-T+8 ) Y (T -0 C ) i- t 1 - s0)+ C )
2 0 0 C 0 0

+ V + ~eT -t
0 i-i

in view of (FS), (HS), (2.23) and (2.24), the last inequality implies

2T 0+8(
0 s0  ( a ) (t y 0

(2.28) - e 2 - 3(R + 1)e 0a C0 0 Ci1 +
4T T 0-t -

+ (u C,(XOOT)- u~y0 ,.0) 4 -HCro~xo~u OT ),DD(xooti + LC1 P1 +

+ C (I + ID*(.,ti I + RD 2 *C.,t )I)IPI + L(L + (Z + 3)(R + 1) eLTI1PI

where r -C C R,L) is given by (78), provided that
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Now we add (2.21) and (2.28). Using (2.20), (2.23), (2.24), (W?) with

N M andmax CR * L 1)

I(0,T 0 1  (- )Y,01 46a

we obtain

2T a M 0 0 + i(ux 0 ,T 0) -IC H(s0 ,y0 ,uly 0 ,s0 )D*Y 0 ,s0 )) -

- .(,orx,u(x,0 ,0 ),I(yo,.o)) + ( L + + 3)(R + 1))eLT1 P1 +

+(8rOO) Y (( -80 )

+ 3(R + 1)e2 0 0 (-y(r 0 - 0 ) + C o 0 0 C tt
0 T0 ti-I

+ C5 1 + ID#(,t )I + D
2
ID(.,ti)IPI + LI 1lPI + M146eL

T + (L + 1) PI)

and therefore, in view of CR3), (HS), (H4), (H6), (2.12) and (2.19),

(2.30) 1 M, 2 00 C48e6LT + (L + 1 )IPI)M + LCllPI +
2T 2 21

+ c5 (1 + 6(R + 1)eLT(- + 8) + 12(it + 1),LT(1 + 6))IrpI +

+ (C +NR)(1 + LMLT+ { E T + 26 + L + IDul)E
2

1 11 2 2T

+3= + 2 )e iPI + L, (L 3)(R + 1))T 1PI

1/4
Combining (2.16), (2.18) and (2.30), using the fact that c - IPI , assuming

IPI < 1 and letting 8 + 0 implies that
M ll

1/ 2

and therefore

sup - (uP(x,T) - U(X,T))
+ 

C FIPI 
1/ 2

CXT
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where

LT -2 2 L(2.31) K . eTK1 - 2(C ) + LIDu I + IDul + LIDu I)e +
1 0 0

2TeLT(2, (L + )i + LC1 + C11 + 18(R + )e LT ) +
2 2 1 5

+ (C + N )(1 + L)(R + I + L + IDul) + 3CR + i)eLT

R R 2 2T

provided that

(2.32) IPJ < min{l, 1I.

L(L+) 4 (24re IT+C(L+1))2
2 2 2

O'( N(b) We begin with the observation that it suffices to assume u0 e cb (R Indeed,

if u e BUC(R N), we can find a seauence {u I in CO' (R N ) such that lu0  - + 0

as m + -. Then, in view of Proposition 1.4, it is

Eu- um1 4 eLT u0 - U mI

where um  is the viscosity solution of (0.1) for U 0m. Moreover, if up'. : QT + R is

defined by (2.1) for u0m , then, if T e (t i1,t] for some i = 1,...,n(P), we have

lu (*,T) - U (*,T)i 4 (1 + (T - t_ 1 i)C6)lu C,*(o,ti_) - uP( ,ti1)

(T-ti I )C6( e Iu ~(-,ti_) - u C,,ti~)

A simple inductive argument implies then that

TC
lup'm - u 1 e Eu1m- uI1

Combining all the above we have

$up - ul ( ( T  + e )1uOm - u 0 1 + up, 5 - u M

For every a > 0 there is an m such that

- TC

(eTL + e )u 0 5 - u0 I <

ut then, if P0 0 (am) > 0 is so that for IPI < 0
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it is

Iup - ul <a

and thus the above claim is proved. For the rest we are going to assume that

e 0 N ). In this case, ye need the following lemmau 0•C b  ao
Lemma 2.2: For a partition P - {0 - t < ... < t - T of 10,T) and u0 C O(l

let u. : QT 
+ R be defined by (2.1). The following are true:

(a) for every T e (0,T]

(I) lup(.,T)l C • (lu 0 1 + TC )
(ii) u, e 0, an d p(.,T). C e a (Du I T

u~.1 Cb ( an u(,) u 0E C9 )

where C9 - C 9 (e TC7(iu + TC)).

(iII) If T e (til,t i I for soma i - 1,...,m(P), then

lU p(.,T) - u p (,t i-I)I I I(T t ti_ 1

Tc 7 T(Ca+E 9 )

where F1 " C (e (Iu0i + TC 7 )' a (IDu01 + 9 )

(b) up e SuC(QT

Since the lemma is proved in exactly the same way as Lemma 2.1, we omit its proof and we

continue with the proof of Theorem 2.2 (b). It suffices to show that

sup - {e (uu(XT) - '(x,r)) ± } * 0 as IPI * 0
(xT)eQT

Without any loss of generality here we prove only that if

Mp - sup _ (e (u p(x,r) - u(xT))
+

(x,T)

then

+ 0 as IPI + 0 *

Since the proof has many similarities with that of part (a), we omit some of the details.

To this end, we claim that for every a > 0 there is a p0 P 0 (lu 0 l,a) > 0 so that

if JPI < Pop then

M < a
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thus the result. Indeed, for a > 0 fixed but arbitrary, let c > 0 be so that

(2.33) 2(Du I + Ioul + ) )c + 2Tw (C) < a
0 1 H,Max(IouI+1,luI) 2

N
where WH,R is the modulus of continuity of H on [0,T] x R x [-R,R] x B N(0,R), I is

given by Lema 2.2 (a) (iii) and IDul - sup IDu(,T)I. (Note that, in view of

0,1 N 4T
Proposition 1.8, UT) cbI(R) for every T e [0,T]). For such C choose p0 > 0

so that if P < 001 then

(2.34) 2T[W a(2 L + 1)P) + p + .(4_ + (C + 3)(R + ))eLTP +
H,ax(IDui+t,luI) 2 1 2 1 4T

+ *F(t.P0u '#) - + H(t,.,u,D*)l_ <
TC__P 2

where R m uax(lu7,e (TC7 + lu 0)) and

26(R + 1) LT(12R + 1) I ET
Eui ,iou ,lI~l,ID2. *I ,,,,x(R,,, - "" eLT'(

2

where L1  is given by Lemma 2.1 (a) (ii) so that

IDul, sup IDup(-,T)l C L,

and p0 > 0 is such that 04 T

I (L1 + 1 I2 1 )p 2

we are going to show that if IPl < Po' then

(2.35) M < a

To this end, let P - (0 - t < t I < ... < tn(p) = T} be a partition of 10,T] with

IPI < P0 " Without any loss of generality we assume that

MP> 0

In this csse, as in the proof of part (a), for every 6 > 0 we can define a continuous

N N
function Y R x R x [0,T] x [0,T] + R by

-L(T + s)
(xy,T,2) - e (u P(x,T) - u(y,s))

+ 
+ 3(R + 1)0 (x - y) +

+ 3(R + 1)y C(T - s) + 268(x,y) - 4T

-34-
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R 2 *
where c e c0 (on " ), 0 4 C C I, I1 , ID2d( 1, 6 (.) - B(), v (.) 

= -(), 1 1.C

as in (1.8) and Y &S follows{ (no, 0 c Y - 1, y(O) - 1, I'1 4 2, Iy"I 4 4

(2.36) and

y(t) - 0 if ItI > I

N N
such that there exists a point (x 0 ,Y0 1 T0 ,s 0 ) e R x R x [0,T] x 10,T] so that

N N
(2.37) T(x 0 ,Y0&T0os 0 ) T(xy,T,s) for every (x,y,Tas) e R x R x (0,T] x (0,T]

Moreover, as in part (a), for 6 < 6 0 -in( . , . ) we have

(2.3 ) 
I x 0 -

Y
O

I  •
C' C, 

T 0  " a
0  e, uP(x ,T )  - u(y 0 ,s 0 ) > 0 and

Y(x 0 ,y 0 ,T0 ,s 0  > 0

We have to consider the following three casest T0 ) 0 and so - 0, To = 0 and

O ) 0 and T0 > 0 and s > 0. We begin with the case T0 0 0 and a0 - 0

1st case. T0  0 and a - 0

It follows from (2.37) that

-i- 0

2 (uplNOT 0 1  u 0(y0 ))
+ 

+ 1R + 1) + 26 lx0,,y,T,) ) 2Mp + 6CR + 1)

and so, in view of (2.38), for 6 < 6 0

(2.39) Mp C 2(IDu0 1 + )c + 46

2nd case. T. - 0 and a ) 0

Again (2.37) implies that

L

S20 (u(x u(Y0 ,S0 )+ + 6(R + 1) + 26 ) Y(x0 ,y0 ,0,s0 ) > Mp + 6(R + 1)

and so, in view of (2.38), for 6 < 0

(2.40) Mp P 21DulC + 46
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3rd case. 10 > 0 and so > 0

As in the 3rd case of the proof of part (a), it follows that for 6 < 60 1 in view of

(2.34), it is

__ 3(T0~+s0}

2-T Mp e ( H(s 0 ,y0 ,u(Y0 ,S0 ),D*/(y 0 ,S0 )) -

- H(r 0 ,x0 ,u(y 0 ,s 0 D (Y0 ,s 0 )) + wH,max(,L +1( 4 eLT + 2(L + 11)pI) + 
4T

where 4 is given by (2.20) and so

( 4 2T , . (,+ ) + (46e LT + 2 + +
P w (Eaxu1,l 11 Cc aRL 1) 2 1 24Tr

Adding (2.39), (2.40) and (2.41) and letting 6 + 0, in view of (2.33), we obtain

(2.35).

Remark 2.1. It follows from the proof of Theorem 2.1 (b), that part (b) is really a result

concerning Lipschitz continuous functions. In particular, if for (t,P) e K,

0,1 N 0,1 N 0,1 N
.(t.p,,) C. CM ) X C" (3 )+ "C ( ) satisfies all the assumptions of Theorem 2.1

(b) with (F9) replaced by (P13), then the conclusion of Theorem 2.1 (b) holds for every

e0,(RN (F) was used only to show that if (2.2) is true for everyu0 e b
0,1N

U e cb (R), then it is true for u0 e BUC(R N ) too.

The next theorem is concerned with schemes which, although do not satisfy a generator

type assumption, can be approximated in a suitable way by schemes of type considered in

Theorem 2.1. More precisely we have

N N
Theorem 2.2. (a) For H : [0,T] x R x R x R + f satisfying (Hi), (H2) (with

a constant C), (HS) (with constant L independent of R) and (H4), (H6), (H7)

0,1 N
(with constants C ,N ,M respectively for R ) 0) and for u0 e C R

PR R0 b
0,1-

let u e Cb (Q ) be the viscosity solution of (0.1) in Q . For

(t,P) e K - (t,P) e (0,T] x [0,001 : 0 ( p < t, where 00 = C0lu o) > 0,

0,1 N 0,1 N - 0,1 N
let F(t,P,'> Cb (R ) + Cb (R0 be such that for every u,; e Cb"(R

-36-



5 There exists a constant C10 > 0 such that

(I)- 10 -
IF(t,p,u) - F(t,p,u)l ( e lu - uS

Moreover, suppose that for every (t,p) e K there exists a mapping

011p,) (3 N n c. (3 " ) ' (a N , which satisfies the assumiptions of Theorem

2.1 (a) with (F13) instead of (pS) and also

For every u e Cb

(F16) IF(t,p,u) - F(tp,u,u)l 4 C1l p 2

wheie Cll C 11(1ulIDul

For a partition P (0 - t o < t <. < tn(P) ' T) of [0,T), let up T R be

defined by

f up(xO) - Uo(X)

(2.42)

. Up(x,t) - F(t,t - (,t_))(x) if t e (t _,t i for some i = 1,...,n(P)

Then there exists a constant K, which depends only on lu 1 and I~u DI, such that

(2.43) 
up - ul 4 KIP 1/

for IPI sufficiently small.
N N

(b) For H : [0,T] x R x Rx R , R satisfying (HI), (H2), (H4) and (HS) (with a

constant L independent of P) and for u0 e RUC(R 
N
) let u e BUcC(Q T ) be the viscosity

solution of (0.1) in Q T For (t,p) e K = ((t,p) e (0,T] x (0,P0 0 4 0 - tI, where

BU p0 (Nu0
1 ) 0, let F~t,p,) :UCC3 ) + BUCR ) be such that it satisfies (F15) for

- N
every u,u e BUC(I ). Moreover, suppose that for every (t,p) e K there exists a mapping

NNN
(t,p,,'*) SUc(A ) x BUC(O) * BUC(3 ), which satisfies the assumption of Theorem 2.1

(b) and also

For every u aC C (R

(717) IF(tPu) - F(t,p,u,u)I - O(p)

where O(p) depends only on lul and IDul and O(P) 0 as 0 * 0
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If, for a partition P of (0,T), uP I QT + R is defined by (2.42), then

(2.44) u P - u! + 0 as 1PI * 0

Remark 2.2. A remark analogous to the ones following Theorem 2.1 applies here too.

Proof of Theorem 2.2. (b) For u0 ,v 0 e BUC(R 
N ) let up,vp : QT R be defined by

(2.42). Then by a simple inductive argument, in view of (P15), it follows that

TC0

lup- vPl ( e lu 0 - vo1

But then it is easy to see, using the arguments at the beginning of the proof of Theorem

2.1 (b), that it suffices to prove (2.44) for u0 e cb (R ). To this end, observe that,

if + R is defined by (2.1) for the above F and u0 , then, in view of Lemma 2.1

(a), there exist constants R1  and L I which depends only on u 01 and IDu o such that

for every partition P of [0,T] it is

lup I R 1 and sup IDUp(-,T)I < L1
0(T(T

Next and for a > 0 fixed but arbitrary, let pl = 01 () > 0 be so that if p ( pI

then

o(p) < a PCT

2Te

where 0(p) is given by (P15) and corresponds to RI and L I  Then, if T e [ti_1,t ]

for some i " 1,...,n(P), we have

|U p(°,T) - u p(*,T)l 4 F(T,T - ti_1,U p(O t i_ - F(T,T - t _ , ( ,t _ | +

+ IF(T,T - ti 1 ,Up(* ,til)) - M(r,T -

and thus

(T-r )C 10
lu P(-,T) - u p(.,T)l e (Eu (.,t ) - u p(-,ti ) + (CT tP - p_- --- C ti_ 1I

2Te 1

An induction argument then implies that
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. . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 7 - - - -

I Up(',T) - up( ,T)l 4 Te CT 2

2Te 
10

Finally, since by Theorem 2.1 (b) up * u as IPI + 0, let 02 02 (a) 
> 

0 be such

that if 0 4 00" then

Iu, - u, <
P 2

For p (m in{0P,p 2 ) we have

lup - ul < a

which, in view of the fact that a is arbitrary, proves the result.

(a) Here because of Theorem 2.1(a), the above relations, appropriately modified so

that they apply to this case, and (F16), for IPI sufficiently small, we have

1up - ul < KIPI 1/2 + TC1 1e 10 1PI

where K and C1 1 depend only on IlV and IDu01. For Iil < I the above implies

(2.43) with

IC 10
K + 5C1 I e

Remark 2.3. A remark analogous to Remark 2.1 applies to Theorem 2.2. In particular, if

0,1 N 0,1 N
F(t,p,*) : C (R + U (MN) satisfies all the assumptions of Theorem 2.2 (b), then the

results hold for every u0 e Cb' (It). Moreover, it follows from the proof of part (b)

0,1 O0, N 0,1 Nthat we may assume 0"~p*) (3 N) x Cb( ) + b( aisyn l h

properties. Then the result still holds.
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SECTION 3

As an application of the results of Section 2 here we establish, under certain

ass~uptions, a "min-max representation of the viscosity solution of (0.1) in QT* In

particular, if H can be written as the max-mmn of certain affine functions, which satisfy

suitable hypotheses, then the viscosity solution of (0.1) can be represented as the uniform

limit of repeated min-max operations on the solutions of linear problems. This is

important for the tneory of differential games, since it proves, as we are going to see in

the next section, the existence of the "value".

N N
To this end, let H : [0,T] x R x R x R + R be such that

(3.1) H(t,x,u,p) - sup inf {f(t,x,y,z)*p + h(t,x,y,z) + g(t,x,y,z)u)

yey zez

where Y,Z are subsets of RTP respectively (for p,q integers) and

N N N
f - f0,T] x R x y x Z * R , and g,h [0,T] x R x Y x Z 4 R satisfy the following

conditions

If * is any one of three functions f,q,h, then

is uniformly in (t,x,y,z) continuous in (t,x)

and satisfies a uniform Lipschitz condition in x.

(3.2) Let B and K be positive constants such that for

- N
every x,x e R , t e [0,T] and (y,z) e Y x Z it is

14(t,x,y,z) - *(t,x,y,z)f < K rx -Ix

and

l4(t,x,y,z)I s3

It is easy to see to H satisfies (H2), (H4), (HS) and (H7) with the constant in (H5)

independent of R. Indeed, in view of (3.1) and (3.2), we have
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IH(t,x,0,0)1 - Isup inf h(t,x,y,z)l Bh
yeY zez

IH(txup) - H(txup)l < (Kh + XgIUJ + KfIPIxxI 4 C(l + Jul + PI)x-xl

(3.4)

IH(txup) - H(txup)l Bg lu - U1

jH(t,X,U,p) - H(txup)l 4 B fp - p•

The above estimates, together with the uniform in (t,x,y,z) continuity of f,g,h in

(t,x), imply that H also satisfies (HI). But then, in view of Theorem 1.1, for every

u0 e BUC(RN ) the problem (0.1) for the above H has a unique viscosity solution

* e BUC(QT) in QT Moreover, in view of (1.2), for every T e (0,T) we have
u' B

B

(3.5) Iu(-,T)I 4 e g(TBh + lu 01)

Next, for (t,P) e K - {(t,P) e [0,T] x 10,T] : 0 4 o 4 t) and u,v e Buc(R N ) let

N + N
F(t,pu,v) : + R and F(t,p,u) : R + R be defined by

(3.6) F(t,p,u,v)(x) - inf sup f-ph(t,x,y,z) - pg(t,x,y,z)u(x) + v(x - pf(t,x,y,z)))
yeY zeZ

and

(3.7) F(t,p,u)(x) - inf sup {-ph(t,x,y,z) + e 09t Ux'Y2)u(x - pf(t,x,y,z))}
yeY zez

The theorem is

N
Theorem 3.1. (a) For u0 e BUC(R ) and a partition P of [0,T] let u , up Q + R be

defined by (2.1), (2.38) respectively using the above F and F. Tf u e BUC(Q T) is the

viscosity solution of (0.1) in QT for the above u0  and H, then

(3.8) lu - ul " 0 as JPI + 0P

and

(3.9) 111, - ul + 0 as IPI + 0

(b) If, moreover, u C Cb'(RN) and * in (3.2) also satisfies(b)Ifmorove, 0 • b

(3.10) 1$(t,x,y,z) - *(t,x,y,z)lI K It - tI

then, for IPI sufficiently small,
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(3.11) u p- u! C KIPI1 / 2

and

- 1/2
(3.12) lu P- uS 4 KIPI

where K is a constant which depends only on * u01 and IDu01.

Remark 3.1. The convergence of u as IPI * 0 (in the local uniform topology) was

proved by W. H. Fleming in [13] via considerations of stochastic differential games. The

limit function obtained in (13], in view of Proposition 1.2, is the viscosity solution of

(0.1) in QT

Proof of Theorem 3.1. It suffices to check the assumptions of Theorem 2.1 and 2.2. We

begin by proving (3.8) and (3.11). In view of (3.2), it is obvious that

F(t,0,u,v) e BUC( N). Moreover

F(t,0,u,v)(x) - inf sup v(x) = v(x)
yeY zeZ

N -and thus (F1). To verify (F2) observe that for u,v e BUC(R ) and (t,p),(t,p) e K we

have

Il(t,p,u,v) - F(t,p,u,v)l 4 Wv(IP - plf + PtIf(it ti)) +

+ 10 - P1(Bh + B Eul) + P(W h(It - t I) + iuli ,,(It - tl))

- Nand therefore the result. Next, for u,v,u,v e BUC(R ) and k e R, in view of (3.6), it

is

IF(t,p,u,v)(x)} 4 sup sup (0B h + pB |u + vi) 4 lv| + p(B + Bh)(1 + lu|)
yeY zeZ g g

F(t,0,u,v+k)(x) = inf sup{-ph(t,x,y,z) - pg(t,x,y,z)u(x) + v(x-pf(t,x,y,z)) + kJ
yeY zeZ

- inf sup{-Ph(t,x,y,z) - pg(t,x,y,z)u(x) + v(x-pf(t,x,y,z))} + k
yeY zeZ

= F(t,0,u,v)(x) + k

and
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IF(t.P,u,v)(x) - (t,p,;,;)(x)I -( IV - ;I + Pa iu - ;Ii

thus MF), (?9) and (PlO) hold.

0,1 N- N
Now assume that u~v e C b M ). For (t,P) e K and x,x e RN we have

lF(t,P,U,v)(x) - F(t,P,u,v)(;)I 4 [P(Kh - Kii + I' B 9IDu) + IDvi~i + o3Kr)llx-xI

therefor* F(t,0.u~v) e c O'l (j n

iDF(tp,u,v)i 4 f (Itori + P (Kh + K liii + B )(I + lDUt))

Moreover

!F~t,P,u,u)(x) - u(x)I ic p(Bh + B 9iui + af IDUI)

and thus (Wd and (F11). Finally, for u e C (R e CR ,t e [0,T], x e Rnd

p > 0, in view of (3.1) and (3.6), we have

F(t.OA..)(X) - 4(X) +HtXUX,#x)

Isup iftf (-Ph(tXvyz) - -oa(t,x.vyz)u(x) + 6(x - pf(t.xV.z)) - 6(x)) +
y6'I zez P

+ inf sup (h~t,X,y,Z) + g(t,x,y,z)u(x) + f(t'x'y'2).D#(x))I +
yey zez

- sup inf (-ht,x,y,z) -g(t,x,y,z)u(x) + #(x -.gt(tXvZ)) - OPxW

yey zez

-sup inf (-h(t,x,y,z) - (t,x,y,)u~x) - f(t,x,y,z)*D#(x))l 4
yey zez

(sup sup I ON - Pf(t.x~v~z)) - #(x) + f(t,X,Y,Z)D#(Xfl f p B I 2 O
yeT zez

and therefore (M1).

Then Theorem 2.1 (b) implies (3.8) and Theorem 2.1 (a) implies (3.9) Bince, in view of

(3.10), we have
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IH(t'x'u'p) -H(t'X'u'p)I 4 (Kh + X J ul + KfI~

i.e. H satisfies (W6.

For the proof of (3.9) and (3.11) it suffices to observe that for u e cb (R

IF(t,P,1u)(X) - F(t,P,u,u)(X)l 4 sup sup le-p9(t X, ,Z u(x - Pf(t'x'y'z)) +
yey zez

TB

+ Pq(t,x,,z)u(x) - u(x - Qf(t,x,y,z))l r p 
2 
(B a IDul + .1B 

2
Ifue 9

g f 2 q

indeed, then we can use p'(t,p,* , ) for F(t,p,*,* ) in Theorem 2.2 and the result follows

- N

immediately, since for u,u e BIIC(a ), in view of (3.7), it in

pB
Ii(t'P'u) - i(t,0,-u)I 4 : gIu - ul

and thus (FIS).

Remark 3.2. obviously an analogous theorem can he proved in the case that

(3.13) H(t,x,u,p) - inf sup ff(t,x,y,z)*p + h(t,x,y,z) + g(t,x,y,z)u)

and yey zel

F(t,p,u,v)(x) =sup inf (-ph(t,x,y,z) - Pqj(t,x,y,z)u(x) + v(x - pf(t,x,y,z))}

yey zeZ

(3. 14)

F(t,p,u)(x) = sup inf f-oh(t,x,Y,z) + e P9tX Zu (X - pf(t,X,y,z)11
I yey zeZ

where f,q,h satisfy (3.2). Moreover, either Y or Z can be empty. For example, if

Y = and

(3.15) H(t,x,u,p) = inf (f(t,x,z).p + h~t,x,z) + g(t,x,z)u)
zez

then the results of Theorem 3.1 apply to this case too.

Remark 3.3. L. C. Evans proved in (9] a different min-max representation for the viscosity

solution of (0.3) under the assption that H e C1 
(2N C0,1 (RN )adu0eB RN )wt

lim Iu(xfl - 0.

Remark 3.4. For examples of functions H which can be put in the form (3.1) we refer the

reader to L. C. Evans (91, L. C. Evans and P. E. Souqanidis [101 and W. H. Fleming [131.
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SECTION 4.

We begin with a short discussion about two-person zero sum fixed duration differential

Qames. To this end, consider a system of N-differential equations

(4.1) d- f(sAyz) (s < 9 4 T)
ds 0

with initial condition

(4.2) 4( 0 0 0 e RN

where YZ are compact subsets of some R
p  

and R
q  

respectively and

N Nf : Cs0,T] x R x Y x Z + R satisfies certain assumptions, which we are going to specify

later.

The set Y(Z) is called the control set for the player I(II). A measurable

function y(s) (z(s)) with values in Y(Z) for almost every t is called a control

function for I(II). If we substitute into (4.1) any control functions y = y(s), z(s)

(s 4 8 < T ), then we obtain a system

(4.3)d- f(s,$(s),y(s),z(s)) (sO < s < T)

The conditions on f are going to be such that (4.3), (4.2) has a unique solution

Ns O,TJ * R , i.e. is the unique absolutely continuous function for which

T
= + f f(p,E(p),y(p),z(p))dp

so

for every a e [s0 ,T]. We call E(s) the trajectory correspondinq to y(s), z(s).

Given any control functions y(s), z(s) for s < s < T, let E(s) be the

corresponding trajectory. We introduce the functional

T
f g(a, (s),y(s),z(s))ds
5 T

(4.4) P(y,z) a 0 u0 (t(T)) + f h(s,&(s),y(s),z(s))ds

so

N N
where u0 : N R and g,h : [s0 ,T] x R x y x Z + R are some given functions. P is

called the payoff functional. In view of the previous remarks, the p~yoff P(y,z) is well

defined for each choice of controls made by the players I and II.
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Finally, we assume that the earlier introduced functions f,g and h are defined on

[0,T] x RN x Y x Z and we define H t [0,T] x RN x R x RN + R by

+

H + (t,x,u,p) - inf sup (f(t,x,y,z).p + g(t,x,y,z)u + h(t,x,y,z)}
zez yeY

(4.5) and

H (tx,u,p) - sup inf ff(t,x,y,z)op + g(t,x,y,z)u + h(t,xy,z))
yeY zez

We say that the minimax condition (or Isaacs condition) is satisfied if
+ -N N

(4.6) H (t,x,u,p) - H-(t,x,u,p) for every t e [0,T], x e R , u e R and p e R
+

When this condition holds, we set H(tx,u,p) - H (t,x,u,p) - H (t,x,u,p) and call this

function the Hamiltonian function of the differential game.

A two-person zero aum differential game of fixed duration consists of the system of

differential equations (4.3), (4.1) and the payoff functional (4.4). It is a zero sum

game, because the aim of the player I is to maximize the payoff and the aim of the

player II is to minimize it. Throughout the differential game and at any time t each

player has complete information about the past (i.e. he knows everything that his opponent

did), but he has no information about the present and the future choices of controls by his

opponent. The value of the differential game described above should be the value of the

payoff when both players use their optimal strategies, which, however, do not exist in

general. This leads to several alternative definitions of the value as we are going to

explain shortly.

Differential games were first studied by Isaacs ([17]). One of his main contributions

was the heuristic derivation of the fact that the value of the game should satisfy a

Hamilton-Jacbi type equation, in particular the Isaacs-Bellman equation. Later W. H.

Fleming ([11], [12], [13], [141) studied differential qames by discretizing time and

solving difference equations instead of (4.3), (4.2). He defined an upper and lower value

depending on whether the I or the II player moves first at each step (i.e. nas the

advantage) and he examined whether these values exist and if yes whether they are equal.

Fleming introduced "noise" into the game and so into the approximating discrete difference

games. He was then able to show that the upper and lower values of the approximating games

-46-



converge as the amount of noise decreased to zero. After that A. Friedman 151, 116]),

and later R. J. Elliott and N. J. Kalton ([8]) studied differential games directly, i.e. by

not approximating by difference equation. However, Friedman introduced the idea of upper

and lower strategy varying at only finitely many division points. Moreover, he defined an

upper and a lower value depending on which player chooses his control first at each

division point. Then Friedman ((15], [16]) and Elliott and Kalton ((8]) again introduced

"noise* and were able to show that the upper and lower values of the approximating games

(stochastic differential games) exist. All the above (Fleming, Friedman, Elliott and

Kalton) defined as the value of the game the common value of the upper and lower value in

the case they coincide. Moreover, they proved that both the upper and the lower value

satisfy, under certain conditions, in the almost everywhere sense appropriate Hamilton-

Jacobi type equations, which are, if the Isaacs condition holds, the Isaacs-Bellman

equation. Using Proposition 1.2 and the fact that the upper and lower value of the

approximating problems (when noise is introduced) satisfy parabolic equations of the type

in Proposition 1.2 and moreover converge, as the amount of noise goes to zero, M. G.

Crandall and P. L. Lions (5] obtained that, under certain assumptions, the upper and lower

value are viscosity solutions of Hamilton-Jacobi type equations. Thus in the case that the

Isaacs condition is satisfied, the differential game has a value by the uniqueness of the

viscosity solution.

Here we use the results of Sections 2 and 3 to show directly (i.e. without introducing

noise) that the upper and lower value exist. Moreover, if the Isaacs condition holds, then

the value in the sense of either Fleming or Friedman exists. It is an immediate of the

proof then that these two notions (when comparable) coincide.

(a) The value in the sense of Fleming

We begin with the following assumptions on fh,g,u0

f e C( O,T] x 2 x y x Z). Moreover, there exists a constant Kf such
(FLI) that for every t e 10,T], y e Y, z e Z and x,x e R" it is

If(t,x,y,s) - f(t,x,y,Z) l K fx - ;I
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N RN
(FL2) h e C(O,T] x R x y x Z), q e C(O,T] x t y x Z))

(PL3) u0 e C(3 )

Next, for a partition P - [0 - to < tI < ... <tn(p) - T} let

W+ -g NP ,p R [ 10,T] 2 R be defined by

+

W (x,T) - U (X)
P0
+

+ (X,t) - inf supf(t - t)h(t,x,y,z) +
WP zeZ yey J+

(4.7)
(t +1-t)g(t,x,y,z) 

+
+WP(x + (tJ+ I  t)f(tX y'z),tj+1)}

if t e [tjltj+1 ) for j - O,...,n(P) - 1

and

Wp(x,T) - uo(x)

W (x,t) - SUp inf {(t - t)h(t,x,y,z)
yey zez

(4.8)
(8(t J+1-t) q

(t,X,y,z)

1+eWP(x + (t+ 1 - t)f(txyz),tj+I

if t e (ti,t,+,) for j - 0,...,n(P) - I

N + -For (x,t) e R x [O,T], W (W p) corresponds to an approximation of the differential game

with dynamics (4.1), initial condition (x,t) and payoff (4.4). The question is whether

lm Wp (x,t) and lim W (x,t) exist and if yes whether the limits are equal. We need
IP{ O IP140

the following definition.

Definition 4.1 (W. H. Fleming (11], [12]). For a partition P of [0,T) and

(x,t) e QT' let W (x,t) and W (xt) be defined by (4.7) and (4.8) respectively. If
p p

lrm Wp (X,t) - w (x,t) r lim W(xt) - W-(x,t)) exists, then W+(x,t)'W-(x,t)) is the
IPI-0 IPlO I0

upper (lower) value of the differential game with dynamics (4.1), initial condition

(x,t) and payoff (4.4). If, moreover, W+(x,t) - W-(x,t), then W(x,t) W +(x,t)

W (x,t) is the value of this differential oame.
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Now we state and prove the theorem, which establishes the existence of the upper and

lower value and, under the Isaacs condition, the existence of the value of a differential

game. We have

Theorem 4.1. If (FLI), (FL2) and (FL3) are satisfied, then, for every (x,t) e QT' the

upper (lower) value of the differential game with dynamics (4.1), initial condition

(x,t) and payoff (4.4) exists. Moreover, if the Isaacs condition holds, then the value of

this differential game exists. Finally, if f,h,g and u0  also satisfy

If * is any one of the functions f,h and g, then

there exists a constant K such that for every
(L4)~ N

t,t e (0,T], x,x e R , y e Y and z e Z it is

14(tx,y,z) - *(tfx,y,z)I K (It - tI + Ix- XI)

and

(FL5) u e 0 N

0 Cb R

then, for every (x,t) e 6T and IPI sufficiently small, it is

(4.9) IW (x,t) - W(xt)l 4 KIPI
1/2

where K is a constant which depends only on lu0
1 , Du 01 and R > lxI.

Remark 4.1. Conditions (FLI), (FL2) and (FL3) are more general than (FL4) and (FL5), which

are used in 11i], [12], (13]. Moreover, here we use partitions of arbitrary mesh. Finally

estimates of the form (4.9) seem to be new in this context.

Proof of Theorem 4.1. Let (x,t) e CT be fixed and choose i > 0 so that

If P - fo - t < t < ... < t = T) is a partition of [0,T], let i be such that

0 1 n(P)
t e (tilti+1)

Then, for (y,z) e Y x Z, consider the sequence {x (y,z)) J-,...,n(P)  in R defined by

xi(y,z) - x

(4.10) Xi+ 1 (y,z) - xi(y,z) + (tj+4  - t)f(t'xi(yz),y,z)

(x (yz) XJ-1(y'Z) + (t - tj-1)f(tj_lXj-j(y,z),y,z)  for j - i + 2. n(P)
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A simple induction argument then implies that, for any j - i,...,n(P), it is

Ix 1 1 R

where

R-e (R + TBI, f

with

(4.12) B f BUP If(t,O,y,Z)I
,)f (t,y,z)e[O,T]xyxz

t
We continue by truncating f, h, g, u0, H and H . In particular, we define

N N N
fR : (0,T] x I? x y X Z R, g : [0,T] x R x Y x Z + R, h : [0,T) x R x Y x Z + R,

N + N N
u0, R  R + R and HR, H : [0,TI x R x R x 1_ + R by

f(T,w,y,z) if Iwl ( R

f R(T,W,y,z) =

f(T, W R,y,z) if JWl > R

g(T,w,y,z) if lw 4 R
gR(T,w,y, z}

g(TW R,y,z) if IwI > R

h(T,w,y,z) if lwi 4 R

h (T,w,y,z) 
=  

hI

S{h(t, R,yz) if lv > R

0 ' ( w I = u w ) i f l R

u o ( ' ) if Iw i > R

HR(T,w,r,p) inf sup (fR(Tw,y,z).p + g (RT,w,y,z)r + h (t,w,y,z)}
zez yey R R

and

H R(T,w,r,p) s cup inf f R(T,w,y,z)op + gR(T,w,y,z)r + h R(T,w,y,z)
yey zez

It is easy to check that

(i) f R' RhR and u OR are bounded uniformly continuous functions
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(ii) fR is uniformly in (Tw,yz) Lipschitz continuous ia w with Lipschitz

constant Kf.

(iii) If the Isaacs condition holds for H
+  

and H-, then it holds for

H and HR too.HR an

n n N
Next and for each positive integer n choose h ,g e BUC( [0,T] x R x Y x Z) and

nnu0 e BC(CC), so that they satisfy (FL4) and (FL5) and moreover

luol( elul

and

For every T e [OT), w e 1N , y e Y and z e z

,n (TwyZ) - h (TwYZ)l < nR n
(4.13)

ln (T'wyZ) - g(Twyz)
l <

lu (w) - UR(W)I <I

+ - -n -

For each n anA 4ny partition P of [0,T], define W Q * R and W : T R
PR QT P ,R T

n n
by (4.7) and (4.8) using f R' h ,g and u0, R . If, for the given (x,t) e QT and any

(y,z) e Y x z, we define x Cy,z) by (4.10) using fR' then, since

su if R(T,0,y,z)l = sup If(r,0,y,z)l
(Cr,y,z)e[o,T]XYxZ (T ,y,z)e[0,T]xYx Z

we have that, for every n, it is

(4.14) !x (yz)I C R

But then this, in view of (4.7), (4.8) and (4.13), implies that

TB1411I+xt ±,n 1 P

5 (Xt) - Wpn(x't)l e I e (TlW R + 1) + 11

where

B ( sup Ig R(T,w,y,z)l

and
TB
T e R(IuI sup lh R(T*,w,y,z)I)

(r ,x,y,z)e(0,T]x x cZ
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indeed, (4.7), (4.13) and (4.14) imply that, if t e [ti, ti.,) for some

i 0. -- n(P) -1, then

P P: R t J -tlg(t,x,y,z) 
+

4 sup sup le WP(x + (ti,. 1 - t)f( tXY,z).ti+i)
zez yeY

-e J+-t W(tx n (x + (t - t)f (t,x,y,Z) ,t )I +

iP 1 + +

+ (t +1- t) sup sup th(t,x,y,z) - h n(t,x,y,z),
zez yey

and thus

+ +,n
IW (x't) - W PR(x~t)I 9

< e ( +-tBRsup suip fW+,(x + (t1 1 - t)f(t,x,y,z),t i1zez yey

W W:n (X + (t - t)f(t,x,y,z),t )
PR i+1 i+1

+ ti1-tBRW (t -t)-1+ (t -t)-
R j+I n i+1 n

A simple inductive argument then implies (4.15) for "+" case. The "-" case follows

exactly the same way.

+ n - n N
Now we define H IH (0,T] x R x R x RN + R by

H+ n(,w,r,p) =inf Sup (f R(rWoy~z)*P + 9 (T,w,y,z)r + h n(T,w,y,z))
zez yeY

and

Hn(,w,r,p) =sup inf ff R T,w,y,z)lp + g n(T,w,y,z)r + h n(T,W~y,z))
yeY zez

and consider the problems
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+ ---- + "H- (r w , Du- n = 0 in R X [0,T)

(4.165- { ±,n n N
u (w,T) = u(w) in R

0

Since H
+
±

n  
obviously satisfy (Hl), (H2), (H4) and (H5) and uOR e BUC(RN , in view of

Theorem 1.1 (appropriately modified so that it applies for the reverse time problem), we

± :,n
have that, for each n, (4.16) has a unique viscosity solution u e BUC(T).

Moreover, in view of Proposition 1.5 (a), (c), the definition of u0  and the fact that

H+,n and H- 1n satisfy (H2) and (H) with the same constants, there are constants R.

and Cn such that

lu-±,n 1 Rn

and

sup IDu (-,)I ' Cn04T4T

But then Proposition 1.4 implies that, for every (w,T) in QT* it is

TB
+,~,) -,nw, R , e+,n-

(4.17) -uC(w,t) - u w,) T sup HC,w,r,p) - H C;(,w,r,p)l
'e[0,;]
;eR

IrlR

n

Finally, by Theorem 3.1 and Remark 3.2 (modified so they apply to the reverse time

problem), for each n, we have that
I| - ±n

WPn - u-n I+ 0 as 1p' 0

Now let £ > 0 be fixed but arbitrary and choose n large enough so that

TB2 R£
n-e [T(WR + 1) + <1 (R 2

For such an n, let p0 > 0 9 so that, if IPI,IQI < P0 , then

n,n _
W -W I <-

PeR - 'R 2

Put then, in view of (4.15), we have that, for IPI,IQI < Pop it is
+ +

- V(x,t)j < C
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±7

This implies that there exists W (x,t) such that

lim W (x,t) " W-(x,t)
IpI*o

i.e. the upper and lower value exist.

For the existence of the value observe that, if the Isaacs condition holds, then, in

view of (4.13) and the definition of H
±
, it is

sup I n(T,w,r,p) - H-' n(T,w,r,p)l 4 2 (1 + R
sup n n

-Te (0, W1
tieR

(rf(R

Ipl'Cn

Therefore by (4.17) we have

B T

(4.19) lu+,n - u-,nI < -Z (Te R (1 + Rn))

The last observation is that, since lu I Eu I and th (T,w,y,z) - h n(T,w,y,z)l 4 -
0 OR R n'

then

Rn < Te R (lu 0RI + T sup h R(T,W,y,Z)I) < -
(T ,W,y ,Z)

Now for C > 0 fixed but arbitrary let n be large enough so that

B T B T
2 (Ta R (1 + Rn)) + I eR[T(WR + 1) + 1] <

Having chosen n as above, let p0 > 0 be so that, if IPI < p O then

,n 

,n -,n- ' (

IW+(X,T) - W+(x,T)l + IWP(xr) - W-(x,r)l + ,Wpn - u+n I + OW, n u 'nl <
WWPR PP 2

We have

Iw+(x,T) - w-(x,r)l < C

and thus the result.

For the last part observe that in the case that f,g,h and u0  satisfy (PTA) and
+ - Q

(FL5), then so do fR gRR hR and u 0,R . Moreover, if we define WP,R Wp,R  T R by

(4.7) and (4.8) using fR' gR, hR and u0 ,R, then, for every (x,t) e QT with 1XI < R,
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it is
1*

wR (x,t) - V(xt)

Finally, we can apply Theorem 3.1 (b) to the problems

+ H (tewou ±'Du) 0 in R Nx [0,T)

tl w,T) - u0 w) in I?

and the functions wV to obtain that, for IPI sufficiently small,
v1± - U KIPI 1/2

P,R R

vhere u* is the viscosity solution of the above problem (obtained by Theorem 1.1) and

K is a constant which depends on lU0,Rl, IOu0 1 and R. Then for lxi < R we have that

I+(x,t) - U
±
R(xt)l 4 KIPI

1/ 2

WP R

Since as IPI + 0, W (x,t) + u (x,t), it is
P R

WVlx,t) - ut(x,t)
Rand thus the result.

As a corollary of the above theorem and its proof we can obtain the following

proposition

Proposition 3.1. Suppose that f satisfies (FLI) and that h,q and u0 e RUC(R). Then

W (x,t) exists for every (x,t) e 0T . Moreover, it is a viscosity solution of the

problem
+
"_ + + + NI + H±(t,x,W-,D) - 0 in R x [0,T)

± NV (x,T) = uo(x) in

+ N N
where H- 1 0,T) x R x R x R + R is given by (4.5). Finally, if the Isaacs condition

holds, then the value W(x,t) of the differential game exists for every (xt) e QT and

it is a viscosity solution of the Isaacs-Bllman equation
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+ H~t'x.WDW) = 0 in R s[0?

N

W(x,T) - u0(x) in R

where H is the Hamiltonian function of the differential game.

Proof. The existence of W* for every (x,t) e QT follows from Theorem 4.1. Moreover,

it is easy to check using (4.7) and (4.8) that w e C(Q T). Finally, in the course of the

proof of Theorem 4.1, we showed that if lxi < R for some R > 0, then

W-(x,t) - lim u' n(x,t)

where u±
"
n is the viscosity solution of an appropriately defined problem.

R
N +

Now if for * e C (R ), W - * attains a local maximum (which without any loss of

N
generality can be assumed to be strict) at (x0 ,t0 ) e R x [0,T), we claim that

(x0't0) 
+ 

H(t 0,x0 ,W+(x0 ,t0 ),D(x 0 ,t0 )) > 0
at x 0 ) + 0 *

Indeed let R0 be such that

Ix o  < RD

and choose P. usina (4.11). Then we know that for lx 4 R0

+ ,
W (x,t) _ lim uj (xt)

N

with the limit uniform in (x,t). But there are (Xn,tn ) in R x [0,T) with Ix n I R0

such that u
n
_ 0 attains a local maximum at (x ,t ) and, moreover, as n

n nxn,t n) x0 ,t0 )

Since it is

+,n +,n (*
t (x'tn) + H (txuR (xn,tn),Di(X,t)) 0

in view of the definition of H 
+

, as n +

+
--t (x0 t0 ) + H (t0 ,x0 ,W (xo,t ),tD(xa,t )); 0

(*)(**)This ineouality corresponds to (1.1), if one solves the reverse time problem.
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+
Similar observations for the case that w - * attains a strict local minimum at

(x0 ,t0 ) imply the result for W 
+  

For W one repeats the above arguents.

(b) The value in the sense of Friedman

We begin with the following assumptions on f,h and u0  (here for simplicity we take

g 0)

N
f e C( 0,T] x R x Y x Z). Moreover, there exists

I a constant Kf such that, for every t e [0,T],
(FRI) - N

y e Y, z e z and x,x e R , it is

If(t,x,y,u) - f(t,x,y,z)l 4 Xfx - xl

N
(FR2) h e C([0,T] x R x Y X Z)

(FR3) u0 e C(RN)

(FRI) implies that, for y (0,T] + Y and z (0,T] + Z measurable function6 and

(x,t) e 6T' the system

4 -= f(T,& (T),y(T),Z(T)) t < T 4 T1 C T

(4.20)
((t) - x

has a unique solution, which we denote by 4(T;x,t,T1,Yz)

For a partition P - fo - t0 < t I < ... < t - T} of [0,T), let

+ -
Vp, Vp Q T + R be defined by
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Vp(xT) - Uo(X)

+

V (x,t) - inf sup {Vp(C(t lx,t,t ,y,z),tP zez(t,ti+ 1) yey(t,ti+1 )  P i1 i1 +

(4.211
ti +

1+ f hlsrtls,x,t,ti+1',y,z),yls),zlallds1

t

if t e (t,t i+1 ) for i O,...,n(P) - 1

and

V (x,T) = uo(X)

V (x,t) - sup inf {V-((t 1 ;x,tt ,yz),ti) +
P YeY(t,ti+11 zez(t,ti+11 P i+ +1 +

(4.22)
ti+l

+ f h(s,&(slx,t.ti+1,y,z),y(s),z(a))ds}

t

if t e (tl,t i+) for i 0,...,n(P) - I

where for 0 4 T T T T, Y(T,r) denotes the set of measurable functions

y : TT] + Y and Z(T,T) denotes the set of measurable functions z : [T,;] + Z, (It

is assumed that y, z are defined only almost everywhere) and for y e Y(T,T) and

z e Z(T,T), E(*;X,T,T,y,z) denotes the unique solution of

S M 

f(x, (s),y(s),z)) aT < S

C(T) - X

It follows from (4.21), (4.22) and Lemma 1.4 of (16] that for every (xt) e QT'
;

V (x,t), (V (x,t)) is the upper (lower) P-value of the differential game given by (4.1)

and (4.4) with initial condition (x,t). (This concept of upper (lower) P-value of a

differential game was introduced by Friedman in [15). Since it is rather lengthy, we do

not explain it here). The question again is whether lim Vp (x,t) and lim V (xt)

fPj+O IP+0
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exist and if yes whether the limits are equal. Before we answer it, we need the following

definition.

Definition 4.2. (A. Friedman 1151, 116]) For a partition P of [0,T] and (x,t) e

let V+(xt) and V Cxt) be defined by (4.21) and (4.22) respectively. If

lis V (xt) - V (xt) ( lU V (xt) - -(xt)) exists, then V(xit) (V-lxt)) is

IPl+0 o IPl 0 V
the upper (lower) value of the differential game with dynamics (4.1), payoff (4.4) and

initial condition (x,t). if V+(x,t) - V-(xt), then V(x,t) - V+(x,t) = V-(x,t) is the

value of this differential game.

Now we state and prove the theorem, which establishes the existence of the upper and

lower value and, under the Isaacs condition, the existence of the value (in the sense of

Friedman). We have

Theorem 4.2. if (FRI), (FR2) and (FR3) are satisfied, then, for every (xt) e . the

upper (lower) value V +(xt) (V'(xt)) of the differential game with dynamics (4.1),

payoff functional (4.4) (g 2 0) and initial condition (xt) exists. Moreover, if the

Isaacs condition holds, then the value V(xt) exists.

Remark 4.2. Theorem 4.2 was proved by Friedman ([16]). His method is related to theory of

stochastic differential games. Here we give a direct proof using the results of Section 2.

Proof of Theorem 4.2. Using the arguments at the beginning of the proof of Theorem 4.1 we

can easily reduce to the case where

if # t any of the functions f and h, then * is uniformly

continuous in (t,xyz) and moreover, there exist constants K and

N
(FR) a, so that, for every t e [0,T], x,x e a, y e Y and z e z, it is

1*(t,XYZ) - *(t,;,Y,X)I 4 K Ix - ;I

and

14(teX,y,z) l ( n

and
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(FRS) u 0e UC( ).

Here we only prove the existence of the upper value, since for the lower value one uses the

same arguments. To this end, observe that if H+  is given by (4.5) (with g 0), then,

in view of our assumptions, H+ satisfies (HI), (H2), (H4) and (HS). Thus the (reverse

time) problem
+

( '- + H+(txDV+) - 0 in R x 10,T)3t

(4.23)

V (x,T) - u0(X) in R

has a unique viscosity solution V+  in Q We claim that as IPI + 0
T

IV+ - V+I + 0
P

i.e. that the upper value exists and it is the unique viscosity solution of (4.24). To

prove the claim we are going to use Theorem 2.1 appropriately modified, so it applies to

the reverse time problem. In particular, for (t,p) e K - {(t,p) e [o,T] x

[0,T] : 0 < P 4 T - t), and u e aUC(t), let F(t,P,u) : R + R be defined by

F(t,P,u)(x) - Inf sup {ul(~t + pax,t,t + P,y,z)) +
zez(t,t+p) yeY(t,t+p)

(4.24)
t+P
f h(s,t(sjx,t,t + p,y,z),y(s),z(s))dsO

t

The fa, hat F(t,p.u) e sUC(R ) and, moreover, that (FI), (F2) (for u e Cb (a N

(3), (P4) (for u e 't)), (F9), (FIO) and (F11) are satisfied is an easy consequence

of (4.24), the assumptions on f,h and u0  and the properties of the solutions of

(4.21). Here we only check (F12) (in particular its modification for the inverse time

problem), since it is somehow more involved. we claim that for * e c (2 ) it is
b

(4.25) 1F'taP"° - H (t,-,D )I - 0 as p * 0P

To prove the above let us define A(t,x,p) and A(t,x) by

Altxp) - P(tp,4)(x) - C(x)
p

(4.26)
A(tox) " inf sup (f(t,x,y,z).D4(x) + h(t.x,y,z)}

zez yey
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Then (4.25) is equivalent to

A(t,xP) A A(t#x) as p + 0 with
(4.27) I the limit uniform in (t,x)

Suppose that (4.27) is not true. Then there are c > 0 and x , t such that as

00

(4.28) Alt Pxp ,P) - At ,x Pl > C0

We are going to show that (4.28) leads to a contradiction. To this and, let

N
A : [0,T) X f x y x Z + R be defined by

(4.29) A(txyx) f f(tx,y,tl*D#fx) + h(t,x,yz)

In view of the properties of f, h and +, A is uniformly continuous in (tx,y,z).

This implies that there is a 6 > 0 such that if, for (T,xy,z),(;,x;y,z) e

[0,T] x T x Y x Z, it i. max(Tl - ;'blx - xl,ly - Y1,1z - il} < .Si then

(4.30) IA(",xy-,•) - A(r,x,y,z)l 4 eO/4

next let y e Y(Y,r) and z e Z(r,r). Then for m e IT,T] it is immediate that

(4.31) X1(;x.T,T,y:) - x ( a - T)B f

go if P0 > 0 is chosen to be

PO min{6  a /B}

for t 4 a C t + P < t + Poo Wie have

(4.32) 1A(s, (six,t,t + p,y,i)Pyg) - A(txyZ)l ( C 0 /4

for every (y,z) g y x Z and (y(*),z(-)) e Y(t,t + pO ) x Z(t,t + P0g.

We have to examine the following two cases:

Case 1. Along some subsequence pk t 0 it is

(t *X ,k) - C )A(t ,x)
Af *xkPk 0k P k P

ror each p (here for simplicity we denote the subsequence pk again as P), in view of
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(4.26) and (4.29), we have

At ,x pP) - 0 > inf sup Altpxp y,z)

zeZ yeY

Since At px py,z) is uniformly continuous in (y,z) and Y,Z are compact sets, we can

find z e Z such thatP

A(tpXp P) - Co  A(toxy,z O ) for every y e Y

If P < PO" then (4.32) implies that, for every t P s t + P andP p

(y,z) e Y(tp ,t + p) x z(to, ,t + P), it is

(4.33) A(t ,x ,p) - ). A(sA(s;x ,t,t + pYoz),Yz ) for every y e Y

Therefore, for every a e [t ,t + Pi and y(e) e Y(t ,t + P), if z {-) e ZVt ,t + P)

is defined so that z os) = z , (4.33) implies
p

A(t ,x ,p) - C o  A(s,(s;x o,t ,t + p,y,Z ),y(s),z (s))

Integrating both sides of the above inequality over (t ,t + p) we obtain

A(tp ,x,p) - i 0

0 4 0z

p
t 0

f h(s,&(S;x t,t + pY,z )y(s),z () D(E(six t 't + p,y,z ))do
P t p p 0P pP P

P

t +p

+-f h(s,(s;x h (t t P+ pyz + ),y(s)z ,()ds
t

p0

Therefore, for every y e Y~t P t P+ P), it is

A (t'x~ 'P) E + ~ *t( .p;x ,t 't + p'y'Z )) *x +)4

+ ~f t Ph~s,E(s~x 't 't + p.Y,z ),y(s),z (s))ds
Pt pp p p P p

So
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AC tP.x 9 P) 4 0 e t sup f((t + pjxP*t At + psy,Y ) +

i6t ~ . 9 P P 0 9

+ f h($,E(slx a t 0 t P+ p~y~z )#y(s)#zP(s))ds) - #(X)]
t 99

and finally

A~t 'x 0p - C i nf sup (ct + PIK At, + P,Y,z)) +

tP+P

+ f h(SACaP,',t , t 0+ pfy~z),y(u),Z(s))ds - ( J

-- (F(t ,x ,+)(x ) - O(x )) -A~t ,xp')
p pp p pp

which contradicts the fact that e 0 0.

case 2. AS P +0, A(t*xP) )P + Mt 'x ,P).
0 0 p P

For p < p 0  and since

inf sup Aft ,X eyea) C + M~t 'x ,P)

zes yey0 P

for every z @Z we can find y. - y,(z)e Y so that

At'PY(z),z) C 0~ + A~t 1x P P)

Then, in view of (4.32), for t 0 < a t p+ p and (zle r(t P t P+ p) x Z(t ,t P+ p) we

have

(4.34) A~m.4(six ,tPtP + 0,y,;),y (z),Z) C A~t 'x ,p) for every z e z

For every zC*) 0 Z~t Pt 0+ p) vs can find a sequence {z kI of step functions defined on

It 0 t P+ p1, such that

-63-



sup Iz(s) - Z(ls)I 61 for some k
s I

(4.35)

mesa I < C P
16M4 0

where I is a subset of [t,t p + P) and M > 0 is such that

N
IA(T,w,y,z)I 4 M for every (T,w,yz) e [0,T] x N x y x Z

Since

z k(s) = Zki

for s e Bk i = ,..., - i0 (k), Bki = [t ,t + pl), then, if Yki = (z ki
i

(4.34) implies

(4.35) A(s(s;x ,t ,t + Pyz),YkiZk) E - A(t xp)

P p P -izk 4 0 XP)
Now define yk e Y(t Pt + p) by

Yk~
s ) 

- Yki if s e Bki

Then (4.35) implies

3
(4.36) A(S,E(slx pt pt + ,y, Z),Y l9),Zk(s)) C 0 + A(tpxp,p)

Moreover

t P -p
If Als,E(s;x P 'to',t P + P'Y k'Z)Y k(Sl'Z k (s ) )

t P
f A(SA,(s;x , t P t p+ p'y k z),yk(s),z ()ds

- A(S, (stxp,tp,tp + p,y ,z),yk(S) ,Z(s))ds!

(p - meas I) CO + 2(meas I)M 4 83- 0

4 8 0

This inequality together with (4.36) gives

tp+p

pf A(s,Els;xo't 'tp + O'y ~z),Y ls),zls))ds • C + A(tpx ,P)
t k k

P

Thus we proved that, for any control z(*) e Z(t ,t + p), there is a control
p p

y(*) e Y(t ,t + p) such that
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[c((tl + Pix ,t ,t + p,y,Z1) +

+ f t PhsU , t 't + o,y,z),y(s).Z(e) Id5 -Ox )j > 3 + A~t ,x 'A)

tP 0 P a80 p P

p
tP

therefore

Atp X op) E £o + A(t ,x ,p)

which contradicts the fact that C0 > 0.

Having shown that the upper and lower value exist, the fact that the value exists, if

Isaacs condition holds, is an immediate consequence of the uniqueness of the viscosity

solution.

Remark 4.3. Under assumptions (FR4) and (FR5] one can prove that the upper and lower value+ ;
exist by using the fact that V+ and V are monotone with respect to IPI ([15]).

P

Then, by modifying some of the arguments used by Friedman in [151 and the equation of

+
dynamic programming, one can show directly that V and V are viscosity solutions of

the appropriate problems. This was first observed but not published by the author. (Later

it appeared in [21). Nevertheless the arguments we gave here in order to verify (F12) are

again related to the equation of dynamic programming, which is hidden behind the recursive

relation that defines Vp.

Remark 4.4. The fact that Friedman's and Fleming's definitions lead to the same value

follows from the proofs of Theorems 4.1 and 4.2. Indeed in either case we showed that the

upper (lower) value, under the most general assumptions, is obtained as the limit of the

unique viscosity solutions of the same problems.

we conclude this section with some remarks about optimal control theory and a related

theorem. An optimal control problem of the kind we consider here consists of
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(1) an ordinary differential equation

CIA"CI ) '( v( 0 4 t 4 T < T
dT

(t) -x

where Y is a compact subset of Rp for some p, f : 10,T] x R
N 

x y R N satisfies (FRI)

and v : [0,T] * R is a measurable Y-valued function defined for almost every T in

(0,T].

(2) a payoff functional P(v) given by

T

P(V) - u 0I(Tx,t,T,v)) + f h(s,(six,t,T,v),v(s))ds

t

N N
where u0 e C(R ), h e C([O,T] x R x Y) and for 0 4 T < 4 ( T, C(;X,T,TV) is the

unique solution of

ds
I - f(s ,F&(s) 

v(s)) 
T < a

I(T) - x

The aim is to minimize the value of the payoff functional over all possible control

functions. The value of the problem is defined by:

T

(4.37) v(x,t) - inf fu 0((Tx,t,T,v)) + f h(s,&(s~x,t,Tv),v(s))ds]

v(-) t

P. L. Lions ([18], also see L. C. Evans and I. Capuzzo Dolcetta (31) observed that v is a

viscosity solution of

7- + inf ff(tx,y)-Dv + h(t,xy)} - 0 in R x [0,T)

(4.38) t yey

v(x,T) - u0 (X) in RN

Here we state a result which proves the convergence of a certain approximation scheme

to the value of the optimal control problem. In particular, if, for a partition

- o- t0 < t1 < ... < tn(p) '), we define up z QT by
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uN(xT) - UoW

uN(xt) - nf (up(x + (t, 1 - t)f(t,x,y),t +1 ) + (t,+, - t)h(t,x,y))

yey

if t e t it i 1 ) for some i - 0,...,n(P) - 1

then it is

Theorem 4.3. If f,h satisfy (FR4) and u 0 E BUC(M ), then, as IPI + 0

lUp - vA + 0

where v is the value of the under consideration optimal control problem. If, moreover,

fh also satisfy (FLO) and uO e Cb0 (3 ), then, for JPl sufficiently small,

lUp- vi r KIPI
1/ 2

where X is a constant which depends only on lU.I , IDUO I.

Proof. The proof is a direct consequence of Pemark 3.2 and the fact that v is the

viscosity Solution of (4.38)

-67-



SECTION 5.

The first part of this section proves the convergence of explicit finite difference

schemes to the viscosity solution of (0.1) and gives explicit error estimates. As

mentioned in the introduction such a result was first proved by M. G. Crandall and P. L.

Lions ([6]) for the problem (0.3). The theorem stated below is a generalization of their

result.

We now describe the class of difference schemes to be considered here. For notational

simplicity only, we will assume N = 2. The definitions and results for general N will

be clear from this special case and we will not state them. A generic point in R
2  

will

be denoted by (x,y) and we will write Du - (ux uy). Let a, B be some given positive

2 (5) p 2
numbers. For p > 0, u : R+ R and (J,k) e z x z we define u , k  R R,

5xuP R
2 

+ R and A+ujP R
2 + R by

+J,k

ufP (xy) = u(x + jap,y + kp)

x pUkXy
(5.1) u (x,y) = u +1(x,y) -

A Y P ( , = P ( , -U , k ( X , y )
+Uj,k j+j,k+( -

2
Moreover, for p,q,r,s fixed nonnegative integers and u fR R R let

S R R and (Au) :R R 
(p+q + 2 ) (r + + 1 ) 

be defined by

'&u) P(x,Y) = (A u p _rP (x,y) ..... u ,s+ (x,Y))

(5.2) and

(AYu)P(xv) = ( (xy))+ +u _p,_r(x,ylf,.,+uq+J s xy)

0,1 2 2If u e C (R ), it is easy to see that, for every (x,y) e R
2 , it is

(5.3IdxUPk(x,y) Ihu" "xyJA :up(XY , A+u 1kx,Y)I
(5.3) + ,A JA < IDul

pC Ps

(*)3 in the set of integers
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(5.4) ( - - - -1 AIDUI

where a i 2(p + q + 2)(r + a +2) and I denotes the usual metric in any

2 2
Finally, for ua,v : a R and 0 p(t < T, let F(t~ptu.v) S a ' be defined by

Fr(tPU,V)(x,y) =V(xY) - pg(t,X,yU(xsy)o -;! (X,y), (XY)) if p )0

I*" {t,O,u~v)(x,y) -~~

whee :[0,) R2 xRXI(p+q+1)(r+a+2) xa(p+q+2)(r+*+l) Rsaife

(Gi 1: o uniformly continuous on 10,T) x 1K X I- U X

XB(p+q+i)(r+o+2) (0,R) pq2(~~)(09 o vr

There exists a constant C A 0 such that

(G2) SUPt - I(t'x.OO,....0)l 4 C

For every R > 0 there exists a consutant ZLU 0 such thatf Iq(t,XY~r,v~z) - g(t,x~yprpv~z)I Ir - ;I
(0) for every t e (0,T], (x,y) e R2, r,; e (-R,RJ

(p+q+l)(r+e+2) x (p+q+2)(r+*+t)
and (w, z) e it Rf

For every R 1, 0 there is a constant C. such that

1q(t~x~y,r,w~z)-qtxyrvz)

(G4)
C C(I + I(w.%)I)(It ;I +i I(X.y) -(;,;)I)

for t,t e (0,?], (x,y),Cx,Y) e IrI '. R

end (v.5) e R(P+q+1)(r+s+2) IL (p+q+2)(r+e+l)
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For every R > 0 there is a constant MR > 0 such that

(St,x,y,r,w,z) - qCtxyr,0z)I ( N (w'z) - (,z)I
GS) 2

for t e (0,T], (x,y) e R ,  Irl 4 R and

- (p+qr+l)(r+s+2) x(p+q+2)(r+s+1)
(wz),(;,z) e R R with l(w,z)l,I(w,z)I ( R

The explicit finite difference schemes of interest here are generated by (5.5). We

say that (5.5) is consistent with the equation ut + H(t,x,y,U,u ,u - 0 occurring in

(0.1), if

f g(t,x,y,r~a,...,e,b,...,b) - H(t,x,yr,a,b) for
(5.6) 2

t e [0,T2, (x,y) e R r e R, a,b e R

Moreover, we call (5.5) monotone on [-R,R], if

2
For every u : R 2 R, if v(x,y) e w(x,y) for every

(x,y) e R2, then, for any (a,b) e R2 , such that
xPY x P yP

IA +v j ( e,b ) l 1 + ' V k ' (a b )  l  IA , k (a ,b )l t wl ',t (a b ) f
(5.7) p 1 ' B R

for -p 4 JI 4 a + 1, -r 4 k' < s, -p 4 j 4 q, -r 4 k 4C a + 1,

it is F(t,p,u,v)(a,b) < F(t,p,u,w)(a,b).

The main result is

Theorem 5.1. Let H : [0,T] x R2 x Rx R2 
* R be continuous and u0 e C 0,1 (a. Let

0 b

g : (0,T] xR 2 x R x Rt(p3q+l)(r+s+2) x R 
(p

3
+ 2 ) (

r
+ ) + R satisfy (GI), (G2), (G3), (G4)

and (GS) and suppose that (5.5) is consistent with (0.1) and monotone on

[-( 2Ce LT L)(|Du 01 + CT) + 1),e T(2CeLT+L)(IDU 01 + CT) + 1], where, if

R - eLT(Iu I + TC), then C - C . For a partition P of 10,T], define up Q 3
0 R T

by (2.1) and (5.5). Let u be the viscosity solution of (0.1). Then there is a

constant K, which depends only on lu 01, IDu01, g and T, such that, for sufficiently

small 1pI,

(5.8) U p - ul - KIPI 1/ 2
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Proof: It suffices to check the assmptions of Theorem 2.1 (a). It is obvious that, for

every (t,P) and uv e I,1(2), F(tPuv) 6 C0(a2). Koreover, (F1) follows from

0,1 2
(S.5). Next, for u e Cb (a ) observe that

I?(t,P,u,u)lx.y) - u(x,y)li -o g(txyu(xy), -- (x,y), (xyl

and therefore

*P(t'puu) - ul 4 PC4(luIIDuI)

where C4( ul ,IDul) - sup jg(t, #r,wvxz)

te [0T]
Ir 1(1 uli

I I Al Diul12 l4AI , 1

with A given by (5.4). The fact that (t,p) F(t,p,u,u) is continuous in the

0,1 2
I 0-norm for u c (a ) follows from the above inequality and (G2), (G3), (G4),

(GS). Finally, (P3) is satisfied in view of (5.5).

Now we want to verify (FS). To this end, let

r- /2 (maxfp,r,q + 1,1 + 1) + 1)max{a,B)

2 -
and asms that v(x,y) 4 w(x,y) for every (x,y) e a . If for some (x,y) e t it is

Iv(x + a,y + b) - v(x; + ,y + b)I,lw(x + a,y + b)-

(5.9)
- w(x + + b)l ( lI(a,b) - (a,b)l

for (ab),(;,b) e B2 (0,pr) and - *T(L+2Ce IT(ODu0I + CT) + 1, we claim that, for any

u (2"),

(s.10) F(t,0,uv)(;.y) < F(tpu,;)(;xY) .

This together with the fact, that, in vie, of (G2), (G3), (G4), (5.6) and Proposition 1.5

0,1 2
(C), U((,T) e CO (3 ) for every T with

sup tOu(.,y)l C eT(2Ce ELTE)(IDU + CT)
00<T<CT

implies (PS). To prove (5.10) we use the monotonicity of the scheme. In particular, for
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some J,k with -p 4 j q, -r 4 k 4 a + 1 it in

*1k ~~I ,(x + P(i + I)a. y okR) -v(; + pai+ ONUl

But (pci + 1)a,pkS), (Pja,pkl3) e B 2(0,pr), therefore by (5.9) it is

and similarly

+' j,k +J',kv~') &+wj,k'x

(5.10) then follows from (S.7).

For (F6) observe that the discussion after the statement of Theorem 2.1 implies that,

0,1 2
if u e C C R ) with 1D.1 4 Z + 1, then

IF(t,PIuIU) - F(t'P'u,0)I 4 lul

Therefore

IF(t,P,U,U)I 4 lul + IF(t,p,u,0)I

But

IF(t,P,u,0)(x,y)I --Pg(t,x,y,u(x,y),0...0,0...0)I 4 P(EluE + C)

and thus

IF(t,p,u,u)E 4 e PL(tuE + PC)

Next, for u ecb0, (3)2 such that HuE < e TZ luE + -C) and I~ul ( L let

- 2
u R + R be defined by

Z(x,y) - uCK + nay + ~
2

for some. (n,E) e R . We have

IF(t,0,u,u)Cx,y) - F(t,p,u,u)Cx + n,y +~) E) PF(t,p,u,u) - F(t,p,u,u)E +

+ plq(t,x,y,U(x,y). A (x + n'y + E) C x + r(,y + )-Pa P

- q(t,x + n,y + E,u(x + n,y + (xCu) , + n'y + E;), (&!) (x + n' +
PQ P

therefore
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IF(to,uu)(x,y) - r(t,P,u,u)(x + ny + )t

I uI I(A )I + pEIDulI(n,E)I + P0(1 + IDUI)l(n,E)I

which implies

IDF(t,P,U,U)l ( eP(L+C)(IDUl + EP)

Since

ST(L+C)(IDU 01 + CT) <

(F7) holds.

Finally, for u e C O ' I ( xN  
and # e cb2( ), if (x,y) e n is such that

ID,(x,y)I < E + 1

then, for p > 0,

. *(x.v) + H(t,x,y,u(x,y),x (x,y),y (x,y))I
I x y

O

- Ig(t,x,y,u(xy), i (x,y), ! (x,y)) -pa pa

- g(t,xyu(x#y), (x . (Xy) , y(Xy) ... ,y (Xy)) I

therefore

_____________ 4x~v -2lp u)x) - 4(x
'y
) + H(t,xyu(x,y),*xy),y(xy))l 4 MID 21P

where M 
2
AMmax(lul, +l)r and thus (FS).

The second part of this section is devoted to the convergence of certain fully

implicit finite difference schemes to the viscosity solution of (0.1). We now describe the

class of difference schemes to be considered here. For notational simplicity only, we will

assume N - 2. The definitions and results for general N will be clear from this special

case and we will not state them. A generic point in R2 will be denoted by (x,y) and we

will write Du - (UxUy). Let a,0 > 0 be some given positive numbers. For P > 0,

u R 32 2 3 we define A x,±,0 u a2 at and A : 32 Rt by
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- _ . .. .. . .. . . . .. . . . .. . . .

AX 'P u(x,y) - u(x + uIP,y) - u(x,y)

Ax*-P u(x,y) - u(x,y) - u(x - up,y)

(5.11)

AY +'Pu(x,y) - u(xy + PO) - u(xy)

AY#-'Pu(x,y) - u(x,y) - u(x,y - PO)

if u e c ), it is easy to see that, for every (x,y) e R
2
, it is

(5.12) 1A x.±P u(xy)l, 1I Y'Pu(x.v) l Mulpa PO

2 2

As far as H O,T) x R x R x fl + R is concerned, here we assume that it satisfies

(H1), (H2),

There is a constant L > 0 such that

H(t,(x,y),r,(pq)) - H(t,(x,y),r,(p,q))l 4
P (Ha)

L(It - 7l + I(x,y) - (x,y)I + Ir - ri + I(p,q) - (p,q)I

for every t,t e [0,T], r,r e R and (x,y),(x,y),(p.q),(p,q) e R

and

H is monotone with respect to p and q for

every t e 10,T], r e t and (x,y),(pq) e R2

For uv,w e BUC(22 ) and 0 < p C t (; T let T(t,O,u,v)w : 2 * R be defined by

±',XOw A!:y,0w

(5.12) T(t,p,u,v)w(x,y) - v(x,y) - pH(t,x,y,u(x,y), (Xy), PS (xy))

where we use A
+
*

x 'p 
(A +Y*P), if H is nonincreasing with respect to p(q), and

A
-
P
x 'p 

(A- Y'P), if H is nondecreasing with respect to p(q). in view of (5.11), (HI),

2
(H2) and (H8), it is obvious that T(t,p.u,v)w e RUC(2 ). Moreover, we have

Lema 4.1. For a,$ sufficiently larqe, T(t,p,u,v) has a fixed point in PUC(3
2
). If,

moreover, u,v e Cb  (t
1 2

) then the fixed point is In C 0,1(a 2

-74-



Proof. We first show that, for a,6 sufficiently large, T(t,p,u,v) is a strict

contraction in the I I-norm. Indeed. if w,z e BUC(3
2 
2, then

IT(t,P#,v)w(xty) - T(tP,u.v)x(x,y)I f

4PIR(t*x#y#u(x,y), 0-- --- (x,y), t#P-- --- (x,y)) -

- R(t.x,y,u(xy), A -... z (x,y), 0B (xy) L( + 1) - s1

8o, if CO - 22 1 1  I we have
06 2

(5.13) IT(t,0,U,v)w - T(t,P,u,v)zl < C0iw - X1

By the contraction mappinq principle, (5.13) implies the existence of a unique fixed point

of T(t.,u,v) in VJC( U
2
).

If uv,w e C1 ( 2), it follows directly from (RS) and (5.12) that

(5.14) IDT(tp,u,v)wI C IDv * pL(1 + IDul) + C01 DvI

So. if w is such that

IDv + PL(1 + IDul) + C0IDwEC
1 - C0

(5.14) implies

I!vE + PL(1 + IDul) + CO

(5.15) ITDT(t,p.u,v)wl e

In view of (5.13), it follows that T(t,pu,v) : C,, (,2) + 0 ,1(,.3 has unique fixed
0 0,1 2

point v e (3), which satisfies

IDA 4 PL(1 + IDul) + C0

1 - C0

(5.16) and

IiA + pL(C + hui) + C
I W 0
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where the second inequality follows from (H2) (C is the constant in (H2)), (HS) and

(5.17) IT(t,P,u,v)wl 4 Ivi + p(C + lul) + C l

and it is valid even when u,v,w e BUC( R2 )

2 2 BC(12)

Next for 0 4 P 4 t 4 T let F(t,p,.,.) : BUC(R )x BUC( + UCC be defined by

If P - 0, then F(t,0,u,v) - v

(5.18) If P > 0, then F(t,p,u,v) is the unique

fixed point of T(t,P,u,v) : BUC(R
2) + UC(R

2)

The theorem is:

Theorem 5.2. (a) Let H : 10,T] x R x R x R * R satisfy (HI), (H2), (H8) and (H9) and

u BUC(RN). For a partition P of [0,T], define up : T R by (2.1) and (5.18).u0 e

Let u be the viscosity solution of (0.1). Then

(5.19) IUp - ul + 0 as 1PI + 0

(b) If u0 e cb0 1 (a 2 ), then, for sufficiently small IPI,

lu P- ul 4 KIP
1/ 2

where K is a constant which depends only on lu0 1, 1Du0 1.

Proof. (a) It suffices to check the assumptions of Theorem 2.1 (b). (FI) is satisfied

because of (5.18). Moreover, (F3) is an immediate consequence of the definition of

P(t,p,u,v) and T(t,p,u,v). To check (F4) observe that, in view of (5.16), we have

IF(t,p,u,u) - ul 4 p sup IH(r,x,y,u(x,y),p,q)l

((x,y,T)e T
I Dul +TL( 1+I Dul )+C O

I (p,q) 14 -

0,1 2
The continuity of (t,p) * F(t,O,u,u) for u e cb C(R ) follows from the above inequality

for p - 0 and from the properties of T(t,p,u,u) and (5.15), (5.16), (5.17), in the case

that p > 0.

For (V9) we need to specify the monotonicity of H. In particular, here we are going

to assume that H is nonincreasing with respect to p and nondecreasing with respect to

q. If another combination is true, then one has to modify what follows in an appropriate
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way. If p - 0, then

IF(t,O,u,v) - F(tO,uo;)S - Iv - v1

If P > 0, then w - F(t,p,u,v) and v - ?(t,p,u,;) satisfy

wXyi , PH~txU(xy), Axw (x,y), A (x,y)) - v(x,y)

(5.19)
pN+txx'u°x ,Ix,y),A' (~l - xy

(Xy) + (t,x,y,(xy), x(xy)) - (Xy)

We are going to show that

(5.20) SUP 2 (w(x,y) - w(x,y)) + iv - ;I + pLIu - I
(x,y)eR

The above, together with a similar inequality for SUP 2 (w(xy) - w(x,y)), which is
(x,y)e-

proved exactly as (5.20), implies (M9). To this end, observe that, if

S 2 (w(x,y) - w(x,y)) 0
(x,y)e2

then there Is nothing to show. Without any loss of generality, we may assume

(5.21) sup 2 (w(xy) - w(x,y)) > 0
(x,y)e 

-

2
In this case let 4 : R + R be defined by

t(x,y) - (w(x,y) - ;(xy))+

2
Since 4 is bounded, for every 6 > 0 there is a (xl,y 1 ) e R such that

#(xlyl) > sup 2 (w(xy) - ;(x,y)) - 6

22
Next choose C e c0 (U such that 0 4 C ( 1, lDi 4 1, (xly I) - and define

R U2  R by

T(x,y) - *(x,y) + 26C(x,y)

Since f 4 6 off the support of C and

T(x,,y,) - *(x,,y,) + 26 > supeR2 #(x,y) + 6
(xy)e
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there is a point (x0 ,y0 ) e R 2such that

(5.22) Y(xOy 0 ) )- Y(x,y) for every Cx,y) e R2

Moreover, it is easy to see that, for 8 <- u WXY (,)+
2Cx, y) e%

w(xO1 YO) - ;(xO1Y0) > 0

(5.23) and x0 y)

sup 2 W(,Y)- (XY)+ - 4.Xlo wxoy))+2

(x,y)e32 (a ~ )-vxy) vx, 0

Using (5.19) and (5.23) we have

2(v(x,y) -;(X,y)) + Iv - ;I+ 26 +

+ Pff(t'x0 ,y 0 uf 0 y) (x0 y) 'Y (x0,y0)

- Pli(t,xoYo,U(xo,Yo), A x'w (x0,y0)), An-y' Cx0,y0

therefore

2u (W(x,y) - w(x,y)) + IV - ;I + 28 + pLlu - ul +
(x, y )em

+pH(t,x0 ,y0 ,u(x0 ,y A), x' w CX0 1y0 ), A- (x0,y0)) -

But, in view of (5.22) and (5.23), it is

Po - (x0,y0 ) PC (x0,y0 ) -28 PC x0,0 )

and

Al' (x0 ,y ) A VI Cx ,y) 2 25 Yp Xly
PS 0 B0 PS x. 0

Th~us, by the monatonicity of H, we have
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H(t,x01#y0 1 u(x01 y0 ) x.y), 4*XP OW BCYO (xOyO)

- (t'x01 y0,u(x01 yO), b*,x,PW- 4.oy

- 08 A 0YO), A- 26NO26 PC x PO(xOYy PS 0

The above inequality, together with (5.24) and (ff9), implies

sp2 (v(x,y) - ;(x,Y))4 + IV - ;I+ PLui - + 26CI
(x, y) 83

where C1 is a constant which depends on L,a,8. Letting 6 + 0 we obtain the result.

Next we check (110). In view of (F9), we have

IF(t'p'u'u)I 4 IF~t,P,'a,u) - P(t,P,0,0)t + lF(t'p,0,0)I <

-( (I + pL)IuI + IF(t,p#,01

Moreover, if v - F(t,p,0,O), then

w~x'y) =-pU~tCx,y), + O w(,)ALi (X.y))

Pa (x PO

But (5.16) and (5.18) imply

IDI4TL + C 0
1 - C 0

thus

*l(t'P,0,0)I Cp sup R2 IN(T,(x,y),0,p,q)I
Cx ,y)83

Ipq) TL+C0
1pqk1-Co0

and

IF(t,P,U,U)f <C pL Oui + 0C.Y

where
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C7 = sup IH(T,x,y,0,pq)l((xyT)Q T

TL+C
I(pq)I -01.-co

0,1 0,12

For (F11) observe that, if u e Cb (R 2), then F(t,p,u,u) e C (R 2 ) by Lemma 5.1 and
b b

2 - 2(5.18). Let (E,n) e R If w - F(t,p,u,u), let w :R + be defined by

;(x,y) - w(x + &,y + n)

It is easy to check that

w - F(t,p,u,u + Pf)

where

u(x,y) = u(x + t,y + n)

and
-~~)- txyuxy ,+XP -Y'pw

f(xy) - -H(txyxY)f ' ; (x,y), pT (x,y)) -

A+,x,P- -IYI

- H(t,x + ,y + I,u(x,y), - (xy), (xy))

But then (F9) implies

Iw - 4 ( lU - Cu + pf)I + pLIu - ul

So, in view of (H8),

I Dw 4 1Du + pL + pLIDul 4 ePL (IDul + PL)

and thus (F11).

Finally, we want to verify (F12). We are going to show that

(5.24) sup 2 (F(t,p,u,#)fx,y) - *Cx,y) + pR(t,x,y,u(x,y),D(x,y))) 4
(x,y)en

w C5 (1 + ID
2 
I + I I~l)p

2

C. = C5 (IDul). Here we prove only (5.24) + , since (5.24) can be shown in exactly

the same way. Let w - F(t,p,u,f). Without sny loss of generality, we may assue that

+

sup 2 (w(x,y) - *(x,y) + pH(t,x,y,u(x,y),D(x,y)) > 0
(x,y)eC
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2
In this case let 4 R 4R be defined by

*CXY) -(W(X,Y) - *(XPY) + PH(t,X,y,u(x,y),D$(x~y)))

Since * is bounded, for every 5 > 0 there is a point (xl1 y1) e R2 such that

Vxpl> sup 2 (x,y)-6
(x, y ea2

Next choose c e c (a 2 such that 0 4 1, I DCI 4 1. IJI I 1, C(x1 ,y) I and
0

2
define Y R + R by

Y(x,y) - O(x,y) + 26C(x,y)

Since Y * off the support of C and

Y(x t y)f OxiY + 26 >P sup R2 O(X,y) + 6
Cx, y) e

there is a point Cxo*YO ) e R e uch that

2(5.25) t(x 0 , YO ) >Y(x,y) for every (x,y) e R

It is easy to check that if

6 < I sup 2(w(x,Y) - *(x,Y) + PH(t~x,y,u(x,y),0*(x,y))+
(x ,y)eR

then

W(x 0 1y 0  *Cx 0 y 0) + PH(t,x01 y0 ,u(x0 ,y0 ),D4(x0,y0 )) > 0

and

(S.2r- sup 2 (v(x.y) - *(x,Y) + PM(t~x~y~u(x'y),DO(x'y)) +

(x,y)ea

( ((x 0 1y0) f (xoyO) + PH(t,x01 y01 u(x0 ,y ),4(x0 1 y0) + 26

In this case we have

(5.27) v(x0 1y0 ) - *x 0 ,y 0 ) + pH(t,x01 y0 1 u(x0,y0 ),D*(x 0 ,y 0)

- 0!f(t,x0 .y 0 ,u(xo#YO ),f (z 0 ,y 0 ),O*(x 0 ,y 0 )

- (t,x0 ,y0 1 u(x A +), P (x0 # Ay0), (XPO

But, in view of (5.2S), it is



.Pa (x'Y) ( 1y) A+,x,(P _ )
Pa 0 Pa 0

and

A- y'P(xy) A1-yP (

The above inequalities together with (HO), the monotonicity of H, (5.12), (5.26) and

(5.27) imply

Sup 2 (w(x,y) - f(x,y) + pR(t,x,y,u(x,y),DO(x,y)) 
+

(x,y)B3lt

26 + p[H(t,x0 ,y0 ,u(x 0,Y0 ),#x(X 0 ,y0 ), Y(x 0 ,y0)) -

- H(tx 0 ,Y 0 ,u(x 0 ,Y 0 )' _ + ( - pH(t,*,,u(*,*),O(*,o)) -Pa

- 26)(x 0 ,y 0 1, . A-'Y'P(, - PH(t,.,*,u,#) - 2
6C)(x 0 ,Y0 111 '

26 + /2 (max(aA )I D 2 4 + L(I + SOul + ID 2I) + 26)W
2 0

Letting 6 + 0 we obtain (5.24)
+
.

(b) It follows from Theorem 2.1 (a), since in part (a) above we checked all of its

hypotheses.

Remark 5.1. One can prove the same result in the case that H satisfy (H4) type

assumpt ions.

Remark 5.2. Assumption (H9) is not really restrictive. In particular, it is easy to check

that, if u e BUC(QT) is the viscosity solution of

f ut + H(t,xuDu) - 0 in QT

U(X,0) U0 (X) in I?
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then v(x,t) - ux - tc,t), where c e Ris the viscosity solution of

v + B(t,X - tC,DV) + C-DV - 0 in 'I{v(x,0) - u " 03i

where c*Dv denotes the usual inner product le. in view of (H9), we see that, with an

appropriate choice of co we can always achieve (RIO).
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SECTION 6

N
We begin by introducing some notation. In particular, if for u0 e BuC(R) and

0( s T

N

Ut + H(t,x,u,Du) = 0 in R x (s,T]

(6.1)s

U(x's) - u ox) in RN

N
has a unique viscosity solution u e BUC(R x r-,T]), then we write

(6.2) U(ts)u0 - u(*,t)

Similarly, if for u0 ,w e BUC( 0) and 0 4 s 4 T

Ut + H(t,x,w(x),Du) 0 0 in (.,T]

(6.3)~
u(x,s) - u0 W in

N
has a unique viscosity solution u e BUC(R x [s,T)), we write

(6.4) U(ts,w)u0 = u(*,t) o

Moreover, if for X > 0, t e (0,T] and v e BUC(RN)

N
(6.5) u + )H(t,x,u,Du) v in R

has a unizue viscosity solution u e BUCIR t
), we write

(6.6) J(t,X)v - u

Finally, if for X > 0, t e [0,T] and v,w 8 BUC(1N) the problem

u + )H(t,x,w,Du) - v in R

has a unique viscosity sol,'tion u e BUC(d
4
), we write

J(t,A,w)v - u

The first theorem of this section is

N N
Theorem 6.1. (a) For i - 1,2 let Hi : [0,T] x R x R x R - R satisfy (HI), (M2),

(H4) (with constant C. independent of R) and (3) (with constant y 1 4 0 independont

of R). For u0 e BUC(#?) let u e uC(T) be the viscosity solution of (0.1) in QT

with H - HI + H2. If, for a partition P of 0,T], up T R is defined by (2.42)

using F(t,P,v) - U2 (tt - P)U1 (t,t - p)v, then

(6.9) lup - ul + 0 as IP1 + 0
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(b) Suppose that, for 1 - 1,2, Hi satisfies (H1), (112), (4), (H5), (H6), and (W7)

with constants L,Ni,NMi independent of R. If u0 e c' (it') and Q a is

defined by either (2.1) using F(t,p,w,v) - U2 (tt - Ow)UI(tt - p,w) or (2.42) using

F(tp,v) - U2(t't - P)U1 (t,t - p)v, then there exists a constant X depending only on

o 01 and IDu 01 such that

(6.10) Iup- ul ' KIpI
1/2

for IPI sufficiently small.

Remark 6.1. The assumption, that H,2 satisfy (W3) or (H4) and (H7) with constants

independent of R, is made only for simplicity. In fact, one can always reduce to this

case by using Proposition 1.5, truncating H1,H2 in an appropriate way and restricting, if

necessary, T.

Proof of Theorem 6.1. (b) We first prove (6.10) in the case that up is defined by (2.1)

for

(6.11) F(tep,w,v) - U 2(t't - PW)Ul(t't - Pw)v

To this end, it suffices to check the assumptions of Theorem 2.1 (a). In view of

Proposition 1.9, if w,v e cb (3 ), then F(t,p,w,v) e CO (3?). Moreover, since for

bb

Propoition1.9,if0,1 11C
i ,,Ui(S,S,W)V - v for every w,v e C c'(3 ), it is inediate that (P11 is

S 0,1 N
satisfied. (F2) follows from the fact that, for i - 1,2 and u,v,v e Cb ( ),the

viscosity solution of

3u1

a + H(,x,u(x),Du±) - 0 in

u i(x,0) - v in le

is Lipschitz continuous with respect to T and, moreover,

OUi (t,s,u)v - UI (t's'u)VI 4 Iv - v

(?3) is an Immediate conseuence of the definition of the viscosity solution. Next, and in
- 0,1 1 t) t

view of (1.11), for u,v,v e cb (N ) it is

IF(t,P,u,v) - F(t,0,ueV)I ( Iv - vI
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which, by the discussion after the statement of Theorem 2.1, implies (F5) for L - -.

0,1 N
Moreover, in view of (1.12), for u e Cb (R) we have

IF(t,p,u,u)l 4 Iu 1 (tt - p,u)u + p(C2 + E,2 1ul)

< lul + P(LI + E 2 )lul + P(C 1 + C2)

and thus (M6), where-for I - 1,2, CI is given by (H2) and Li is given by (H5).

T(L I+L2 ) I i

For R - e (lu 01 + Y(C + C 2)) and I = 1,2, let C - CR where CR  is

given by (H4). In view of (1.13), we have

IDU1 (t,P,u,u)l e (2CI+L I (IDul + p1

and

S( 12 )P
IDF(t,p,u,u)l 4 e (e CIDul + PC ) + PC2

i.e.

[2(E I+C 2)+(L I+L 2 
) 

p

IDP(t,p,u,u)l ( e (IDul + p(C1 + C 2

which proves (7). Proposition 1.5 also proves (F4), since (1.16) implies that

IF(t,P,U,U) - ul 4

4 P( sup I2 (T,x,u(x),p)l + sup IHl (t,x,u(x),p))
(x,T)elxM [t-P,tl (x,T)Nex[t-P,t]

IpI1DU I(t,t-p,u)ul IpI(IDut

Finally, we need to check (F8). To this end, for i - 1,2, consider smooth functions

H O,T] x R x R + R which satisfy the same conditions as Hi, with constants

depending on the constants of Hi , lul, IDul and are such that

;i(t,x,p) + Hi(t,xu(x),p) as n +

N
uniformly on (0,T] x R x BN(0,R) for each R > 0.

Then, in view of the previous discussion and Proposition 1.5,
n 0,1nN -n

U2(t,t - P)Ul(t't - P)# e C (R ) where U corresponds to H by (6.2) and
2 1~l~ b I i

* e C2 ( N). Moreover, there exists a constant C depending only on lul, IDul, Hi,
b

and 1D 1 such that
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6D1 2 (TT - au)UI(t,t - p,u)#l,IO U(tt - p,u)l (C

(6.12) 
-

ando)Ui(t 
- P)OIIt;"(t't 

- P)0I -C

for every (i,a),(t,p) e K. Then, in view of Proposition 1.4, we have

2
(6.13) tF(t,p,u,#) -o(t~t-p)u (tt-)*I ( 0 sup -V(T'X'p) H i(rxu(x).p)I

i-1 (xr)eQ
T

IpI(C

and therefore

(6.14) -F(tp
' u) )  

Hl(t,,uDO) + H2 (t,.U,D)l (

;U2(t't - )U(t't- )-
< t P + (H I + H2 )(t,.,D#)l +

2
+ 2 s sup _ IHp(.,x,p) - .i(T,x,u(x),p)l

1i1 (xi)eQT

In order to finish we need the following lemma.
N N

Lemma 6.2. (a) Let H1t 10,T] x Rx X" + R be smooth and assume that it satisfies
I

(RI), (112), (14), (H5), (6) and (W7) with constants independent of R. If, for

29e e 1(i), u e BUC(n x it,;]) is the viscosity solution of

3T- + ll,x,Du1 ) - 0 in at x (t,t]

u (x,t) - #(x) in R
N

then for T e (t,t]

lUI (,T) - + (T - t)ffr(t,.,D4)I r (T - t)( - t)(1 + 1D#1 + RD2 I)

where r depends only on the constants related with H1 .

(b) Let H2 : [0,TI x R? x ItN + R satisfy the same hypotheses as H, in part (a).

N -
If u2 e quc(N x It,tJ) is the viscosity solution of
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I u 2  -N tI + H 
2 (T,x,Du

2 ) 0 in R"

3T 2N

u2(x,t) = U(x,t) in R

then for T e tt,t]

(6.16) lu 2 ( -,* - + (T - t)H 2 (t,. ,0) + t - t)H (t,-,D#)l 4

r 2( - t)(t - t)(1 + IDOI + 102,i) + lu 1 (O,t) - 0 + (t - OHI t,.,DO)l

where r 2  is a constant, which depends only on the constants related with H2, H, by

(H4), (H5), (H6) and (H7).

Proof. (a) Here we only show that

(6.17) I(U (-,T) - + (T - tf (ZN) I c FIt - t)t - t)(1 + ID#l + ID 01)

since the other inequality can be proved in exactly the same way. To this end, let

m [t,t] + R be defined by

(6.18) M(T) - sup (u(x,T) - O(x) + (T - OH 1 (txD#(x)))

xei"

We claim that there is a constant r1 such that m is the viscosity solution of

(6.19) M'(T) C F I( + 1D#1 ID2 *I)

and therefore by Proposition 1.1 (b) the result. To prove this claim, let n e c ((t,t))

and assume that I e (tt) is a strict local maximum of m - n on

I = [ aT + a] (tt) for some a > 0. We want to have

(6.20) n'(T) 4 F 1(1 + ID#l + ID 21)

If m(;) = 0, then T is a local minimum of n, therefore n*(T) - 0 and (6.21) is

-N Nsatisfied. If m() > 0, let 0 : Rx I R be defined by

*(x,T) - (u(x,T) - 0(X) + (T - t)HI(i,x,D4(x)))+ - n(T)
N

Since # is bounded, for every 6 > 0, there Is a point (x1 ,TI e R x I, such that

#(XlTI ) > sup #(x,T) - 6

(x' )euN. [ti]

Next choose e C (R 
N  

so that 0 4 C ( 1, JDI 4 1, ID 2 4 2, (x 1 ) = I and

N
define T X N x I 4R by

(6.21) T(x,T) - O(X,T) + 26(x)
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Since t = off the support of 4 and

Y(XI,T I sup *(x,r) + 6

(x,T)eRx x

there is a point (X O 0 ) e N x I such that

(6.22) T(xoT 0 ) Y(X,T) for every (xT) e R x I

We claim that (Xor 0 ) satisfies

As 6 4 0, To * r and

(6.23) (u(x0 T'0 ) (x0 + (T0 - t)HI(t'x0'DM(x0))) =

- u(x 0 ,r0) - *Cx 0 ) + (T - t)11I(tx 0 ,Do(x 0)) ()

To see this, observe that, if for some subsequence (which for simplicity is called again

6) 6 + 0, T0  T, then, in view of (6.22), we have

m(T 0 ) + 26 - n~r O ) ) 0 (x 0 ,r 0 ) O 0 (x,r) )

( Cu(x,T) - O(x) + (T - t)R 1 (t,x,D#(x)))+ - n(T)

therefore

M() - n(T) + 26 ) (x0 ,r0 ) M(T) - n(T) for every T e I0I

This implies that

M(T) - n(r) ) a*t) - n(T)

and thus T - T. Moreover, for every T e I

M(T 0 ) + 26 - n(T ) 
0 0

( 0,T0 #(x 0 ) + (T 0 - t)RI ( 0 (x)) - n(r 0 ) +26 a(T) - n(r)

therefore for I =

m(;) - n6r) ) lim (u(x0 ,r0 ) - *(x 0 ) + (T0 - t)HI(t,x0 ,D9(x0)))
+ 

- n(r) )
640

> 11m (u(x0 ,T0) - 0 ) + (T0 - t)H I(tx 0 ,D#(x 0)))+ " nr) )

) m(r) - n(T)

and thus (6.23), since a() ) 0.
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N xNow since (XoT O) e 
N x e t,t) is a local maximum of

(xT) + u(x,T) - #(x) + (T - t)Hl(t,x,D#(x)) + 26 (x) - n(T)

in view of (1.1), we have

n'(T 0) - HlC,x 0 ,D#(x0 )) + HIT 0 ,x 0 ,D*(x 0 ) -

(T - tlDHIlt , -,D#l.))lx0 26DC(x 0 )) 4 0

therefore

n'(T 0 ) NI t - T 0)(1 + ID#l) + M1 (T 0 - t)1DH1 (t,.,D(.l))(x 0 )1 + K126

where N1 , M are defined by (H6) and (H7) respectively. Moreover, in view of (H4) and

(M7), we have

2
I (tI* I. (-)) l 0 ) 1 CI (I + ID#1) + M ID 61

where C1  is given by (H4). Combining all the above and letting 6 4 0, we obtain

- )N 1 +(42 2
n'(;) C t(N1 +11 1+ 1(M + IDl + ID #1)

thus the result.

(b) Here we use

(6.24) M(T) - I(u 2 (.,T) - + (T - t)H 2 (t,.,D#) + (t - t)Hl(t,*,D4)) I

Since the proof is similar to the one given in (a), we omit it.

Now we continue with the proof of Theorem 6.1(b). In view of (6.14), (6.16) and the

nway that R are chosen, we have

+ (H I+ H2)(t,,u,D 2(1 + |DOI + ID2 0 lp +

2
+ 2 sup - H ItlT,x,p) - Hi(T,x,u(x),p)l

i-2 (x,T)_ _

IP14C

where r is a constant which depends only on lul and Hi(I - 1,2). Letting n + -
2

implies the result.

To prove (6.10) in the case that up is defined by (2.42) for

(6.25) F(tpv) - U 2(t't - P)U (tt - p)v

we need to check the assumptions of Theorem 2.2 (a). The fact that F(t,p,v) e Cb
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and WP5) are iemediate consequences of Propositions 1.4 and 1.8. Moreover, for every

(t,p) e x and u,v e co I B)N e

P(t'P'u.v) - U 2 (t't - 0,u)U I(t't - uv

The only assumption we need to check is (F16). To this end, let u e (3 W). it is .asy

to check, using (1.1), (1.2), that V (T,T - P)U(X) and U 2 (r - P)U I(t,t - P)u(x) are

viscosity solutions of the problemis

+ ai InJ t-Pt TXD n R t-P
ar 2 (TxD 2 30 in 3 Itpt I n R~ t-p

and

u 2 (x,t - P) - U I(t't - p)U(X) in Iru I(x,t - P) - u

respectively, where

R2(TXp I 2 (T#XVU2 (T,T -P)U 1 it, - P)U(X),P)

and

R =XP H1 (r'X, 1 (r,T - O)U(X),p).

Moreover, in view of Propositions 1.5 and 1.8, there is a constant A =A(VuI,IDul) such

that, for every (t,p),(r,a) e x, it is

ID TT- OW I (t't -P)UI,IDO (t't pOuI 4 A

and

'U( T- G'u)U I(t't -P'u)u1IItXI (t't - ,U)uI 4 A

It follows from Proposition 1.4 that

3F(t'p'u) - i(t'P'U'u)I -C goUI(t't - p)u - V 1 (t't - P,U)uI +

+ p sup (112 (TOXOU 2 (T,r - P)0 1I (t - p)U(X),P) - 2 (T'x'U(x),P)I

PC (12 setp go 12 (T, -P)U 1(t,t - P)u-uI + L~ teupt I I(T,T - )U-UI)

Finally, (1.16) implies that
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- 2 T(L +L2  2

(6.26) IF(tPu) - F(t,P,u,u)I 4 P e ((L2 ) sup I H2 (T,x,r,p)I +
(x,T)eQ TIp14A

Irl4R

+ L (L2 + L 1 sup - I (T,x,r,p)[)

(x,T)eQIPI(A T

Ir 11 ii

T(L 2 +L)
where R e (ful + T(C 2 + C )).

(a) To verify (6.9) in the case that up is defined by (2.42) and

F(t,p,u) - U 2 (tt - P)U 1(tt - plu

we first assume that Hi satisfies (H5) with constant Li independent of R. Then it

suffices to check the hypotheses of Theorem 2.2 (b). In particular, by Proposition '.4 we

have p(L 1 +L 2 )

IF(t,p,u) - F(t,p,u)l < e lu - ul

0,1 N 0,1 N 0,1 N
Next, and in view of Remark 2.3, let F(t,p,',') % (R) x Cb (1) + Cb (3 ) be

defined by

F(t,p,u,v) - U2 (tt - p,u)U1 (tt - p,u)v

Using the arguments of the first part of (b) it is easy to see that F(t,p,o,
•
) satisfies

- - 0,1(N
(F), (M2), (M3), (F4), (F10), (F11). For (F9) observe, that if u,u,v,v e Cb R ), then

IF(t,p,u,v) - F(t,p,u,v)l 4 IF(t,p,u,v) - F(t,p,u,v)l +

+ F(tp,u,v) - F(t,P,u,v)I

It follows from Proposition 1.4 that

IF(t,p,u,v) - F(t,pu,v)| = EU2(tt - pu)U1(tt - p,u)v -

- U 2 (tt - Pu)U 1 (tt - P,u)vI ( U1 (tt - p,u)v - U1 (tt - p,u)I ( Iv - vi

Moreover, if R > max(II + r(L 1 + L 2 )Iul + p(C 1 + C 2 ),Ivl + P(L 1 + L 2 )UuI + P(C 1 + C 2 ))

then by Proposition 1.5 (a) and Proposition 1.4, for C > 0 an6 BE as in (1.8), we have

sup {IF(t,p,u,v)(x) - P(t,p,u,v)(x)l + 3R8 (x - y))
fx-yI(t

( sup flU1(tt - pu(v(x) - U1(t,t - p,u)v(y)I + 3R8 (x - y)}
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+ p sup IHN (r ,x,u(x),p) - H 2 (T,y,;(Y).p) f

re (0,T]

4 sup {Iv(x) - ;(y)I + 3RO Cx - y)} +

" P1 up IH2 Cr ,X,u(x).p) - H2 (r,y,u(y),p)I +

Te (0,T)

" sup 1111Cr,X,U(X),P) - H (T,yu(y),p)tj

where B Is such that

sup IDU 1 (r,T - 0,U);I sup IDU 2 (T, - P,u)U I(t~t -P~u)v1 4 B
Telt-p,t) Teft-p,tj

Then, in view of (HO), (HS5), the above inequality implies

IF(t,p,u,;) - F(t,p,u-,vjI 4 ICP;IC + pCL1I + L2 )JD-Ul

+ PCI(L + L ) IDul C + P (CI + C 2 )(1 + IBI)C

where for R, max(ful,suI) and i - 1,2, C R is giver by (HO4. Letting C + 0 above

we obtain

IF~C,0u'v) - P(t,p,u,;)I , P(L + L2I -u

end thus the result. Moreover# we want to verify (F12). To this end, for

u eC b (R"), * e cb(a and with the notation used for the verification of (PS) in (b),

we have

(HI+ H 12 )(t,- u,Do)1 2 1 8u - Iin(,

pp T~
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where now for 1 - 1,2, B i  satisfy (HI). (H2), MR4), (S), (HG) and (17) with constants

depending on n. For n > 0 choose n large enough, so that

2
2 sup iM (T,x,p) _ H(Tr,x,u(x).p)1 <

I ( X , T) T
IP14c

In view of Lesma 4.2 we have

ni(~ -f&'tt- ) -

2 ,. -n)(U1 ( 1  ( + + 24)p
P 1 2 2

if p is such that

r (1 + ID1 + ID2
*1)p (2 2

then
I (t

'
pu,) - H (H 4 H2t uD), < n

which implies (12). Finally (16), and therefore (F17), is proved here the same way as in

(b).

To prove (6.9) in the case that H1 ,R2  satisfy (W3), with constants yIY2 4 0

independent of R, observe that it suffices to assume u0 e 0,1 N for every

140, nu. e nUC( ) we can find a secuence {uot)  in %,1(R), such that IUo u I + 0 as
0 UO 0

n +-. But, in view of Proposition 1.4, it is easy to see that, if UP: QT R is

defined by (2.42) for initial value u0  and un  is the viscosity solution of (0.1) in

Q. for H= H1 + H2, then

-T (Y +Y2 ) n
*u -unl • e 2tu 0 - u~E

and

I - n1 < e 1 - i n .

Then

1TY +2 n n n(6.26) 1up - u, 4 2e Eu - u0 1 + Nu - u I

and thus the claim is proved.
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Next we auusn that u0 C C I (A!). my Proposition 1.S (a) if R > 0 i* such that

-(¥ 4Y2)?
a 1 (lu 0

1 + T(C1 • C2 + 2)) I R

then

I ul I < R

where, for I - 1,2, C 1 is given by (R2). moreover, if, for ± - 1,2, - C gi

by (34), then, by Propositions 1.5 (c) and 1.8,

#Up IDu(.,T)I, sup IDg(.,i)I C
0(T<T

M(4CC + C 
)e 1 ( Y2))Twhere 1 2 ( (IDU01 + 2T(CI + C 2)). Now for 1 - 1,2 consider

oI : 0,0T x R" x it x It + it satisfying (11), (M2), (34). (RS) and such that

(1) * H as n - niformly on (0,?) x ItN x [- , x n OI
n

(Ui) The constant CL in (32) is such that Cn < CL 1.
in in I

(III) The constant C I n (RS) is such that C i 2C I for R ) 0

(iv) R n satisfies (33) with the sme constant as Hi.i
if u

n  
is the viscosity solution of (0.1) in for R n + Hn and if nt

is defined by (2.42) using

inftiu) - U0(tt - P)U I (tt -

n n

where U I correspond to ai. than by Proposition 1.5 it is

Iu ,ulj ( R

and

sup 1DOn(.y,T), sup IDu(.,T)I <
0<T4T 0<TICT

Moreover, in view of Proposition 1.4, for C ) 0 and 1 as in (1.8) we have
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sup ftu(x,T) - u n (y,Tfl + s 1 2 S(x - y)I 4

a- 1 2 sup {1u%(x) - uOCy)J + 3RJ3,(x -Y)) +
I2-yI4

+ ( Y2) sup ICR1 + H )(t,x~r,p) - (n+ Hn)(t,y,r,p)I

te[(0,T]
IrlICR

and

up {IuPCXT) -nx~~ -(Y IY 2 )T C

jx-yp PcuC9 ) + 3Re C( )

e sup1 ~ f xI lu (X) - u (y)I + 3RB (x - y)j +4

+ e I+2 )rj sup IR Ct,x~r,p) - 8 n t,x,r,p)I
i-I IX-YI(£

te (0 T)
lICR

where the last inequality is proved by a simple inductive argument. The above then imply

Eu - 1~ 4 Te I sup - IUI(YIY TC t~x~r~p) - H nCt.xor,p)I +
i-i (x,t)eQ.T

IrICR

+ e r+Y)(IvU 0t + 2CzC1 + E2 )(1 + EMT C

and

Eup - I
1  Te t  

I sup _IR (ttx,r,p) - R~t,x,r,p)I +
P ~~i-i xteT i

+ 0 -(Y +Y2 )(U I + 2(aC1 + E2)(1 + C)?)



Letting C + 0 we obtain

-(Y +Y )Y n.u, 2 "sp I (t.x.rvp) _ H (txrp)IIu~ ul( 1u- u~I +2Tei=I (x,tleQy

Irl(R

For n > 0 let n be much that

2T e I +Yup 2 )ilntx,r,p) - n n(tx~rp)I 2
i-I (x't)eQ T

IrlIR
Ipl'C

nn n
Since Hn satisfy (HS) we know that 'u - u 1 0 as Il + 0. If P i s such that, if

I ~p0
<PI < then

n I /2

then, by the choice of n,

lu -ul <?
n

and thus the result.

Remark 6.2. Using the ideas involved in the proof of (a) above one can prove that, if

for i - 1,2, i satisfy (HI), (M2), (H4) and (HS) and up in defined by (2.1 using

F(t,P,w,v) - U2 (tt - p,W)UI(tt - p,w)v, then 1up - ul # 0 as IP + 0. Since the

proof im almost the same we omit it.

Remark 6.3. One can formulate a convergence theorem for schemes, for which we cannot

verify directly the conditions of Theorems 2.1 and 2.2 (for example Theorem 6.1 (a)). In

particular, we have to assume that for given H and F, we can find a sequence (H,, #

which satisfies the assumptions of Theorems 2.1 and 2.2 and, moreover, converges in a

suitable sense to H and F. This is exactly what was done in the proof of Theorem 6.1

(a).

The second theorem of this section is concerned with the convergence of "resolvent*-

type Trotter products, i.e. products formed by (6.6) or (6.0). In particular, we have
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Theorem 6.2. (a) For I - 1,2, let Hi : [10,T) X x t x Rt + R satisfy (HI), (,2),

(NM) (with constant Ci  independent of R) and (W3) (with constant y C 0 independent

of R). For u0 • BUC(lt), let u e SuC(QT ) be the viscosity solution of (0.1) in QT

with H - R1 I H 2 . If, for a partition P of 10,T, up z QT + n is defined by (2.42)

using P(t,p,v) - 3z(t,p)J1 (t,p)v, then

(6.27) 1up - ul + 0 as IPI + 0

(b) Suppose that, for I - 1,2, Hi satisfies (Ri), (82), (14), (15), (96) and (H7)

0'l(Ig " n !I sttonPo 0T

with constants independent of R. If u0 e c (i ) and for a partition P of [0,T]

up : QT + t is defined by either (2.1) using F(t,P,w,v) = J2 (t,p,v)J (t,0,v)V or (2.42)

using P(t,p,v) - 32 (tp)1 (t,P)v, then there exists a constant K depending only on

1 u0 I and 
1
0u0

1 , such that

(6.28) u P- ul -C Kll

for IPJ sufficiently small.

Remark 6.4. A remark analogous to Remark 6.1 applies to Theorem 6.2 too.

Proof of Theorem 6.2. (b) We first prove (6.281 In the case that up I defined by (2.1)

for

F(t,0,w,v) - 32(tpw)3I (t ,P W)v

To this end, it suffices to check the assumptions of Theorem 2.1 (a). In view of

0,1 N 0,1 N
Proposition 1.9, if w,v e C b (a ), then F(t,p,w,v) e C' (l a), provided that 0 is

sufficiently small. Moreover, since for I = 1,2 J1 (t,0,w)v - v for every

'v eO'l (N ), it is immediate that (P) is satisfied. (F2) follows from Propositions

1.6 and 1.8. In particular, if A > 0 such that

IDF(tPuu)I,ID7I(t,p,u)ut < A

for (t,p) e K (such an A exists by Proposition 1.8), then
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Ir~t,Puu) - F(,,uu) C 1J 2 (tPu)J(t,p,u)u - J 2 (i,;,u)j.(t,P,u)ul +

+ IJ2Ct.,u)31Ctpu)u -2 2 
( t,' 0,)J l (Ct,0u)uI

2
+ 1 0 sup - INx1(txu(x),p) - II(;'xu(x),p)I +
i - (xt)6.

+ I - s up. In LT,x,u(x),p)l(X,T)eO

and thus the claim. (F3) Is an immediate consequence of the definition of the viscosity

solution. Next, and in view of (1.17), for u~v,v a C'l (W) it is

*r(t,p.u,V) - r(tpuv)I ( Iv - ;I

which, by the discussion after the statement of Theorem 2.1, implies (PS) for L .
Moreover, in view of Proposition 1.7, u e 0(it ) we he

C+ CR) we haveP ~ +P

I*(t,p,u,u)I I Ir 1 ltiPu)uI + I(C 2 + 2 1uI) C lul + iCL 1 + E2 )1ul + p(C 1 + C2 1

and thus (6), where for I - 1,2, C4,L, are given by (82) and (ES) respectively. If,

for i - 1,2, C1  is given by (84), then, by Proposition 1.7 and for 0C + i2 ) • it

is

IDl1(t,pu.u)I 4 a (IDul + PC1 )

and

(2C 2+L 2 )p (2E 1 L4)Op
IDP(t,p,u,Q)I 4 el " e l u + PC1 ) + PE1 )

ioe.

IDP(tpuu)l 4 a (2(E 2 + IL+L 2)) Cal + P(C 1 + C2 ))

which provea IP7). Proposition 1.7 also implies P4, since

2
It(t,p,u,u) - ut'< P sup N In I(,x,u(x),P)l

i-1 (x,?)OR
IpICA

where A Is as In (6.30). Pinally we need to check (IS). To this end, for i - 1,2,
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consider smooth functions i I 10,T] X A
N x R" * 2 which satisfy the same conditions an

Hi , with constants depending on the constants of Ri and lul,Dul and, moreover,

{B Xn(txp) + Hi(tx,u(x),p) as n + -

Nuniformly on [0,T] x R x B(n,R )  for each R > 0.

Then, by the previous discussion and Proposition 1.5, J 2 (tP)J 1 (tP)# e (2 ), where

corresponds to ;n by (6.6) and # e (N). Moreover, there exists a constant

depending only on EuIIDuI,Hi,,I* and 11*1 such that

(6.31) IDJ(T,o,u)j (t,p'u)# , IDJ (t,P,u), i, ID3 (t,0)* (C
2 1 12~~l''

for every (To),(t,p) e K. Then, in view of Proposition 1.6, we have

2

(6.32) *F(t,p,u,#) - 1 2(t'P)j I(t'P)#U 4 P $UP - i i ((rXx(Xp) -
ill (x,T)eQT

and therefore

(6.33) I F(t
'
p

'
u,#) + (H1 + H )(t,.,u,D#)l
P1

2

4 2 1 sup _In(T,x,p) _ Hi(T,xu(x),p)I
i-I (X,T)Q T.

Ip14C

-n -n
3 2 (tP)JI(t,p)# -

+ i 4 + (n + H2 ) ( t ' ' ' D ) l

In order to finish we need the following 1e

Lenea 6.2. (a) Let H : [0,T] x I? x I? + R be smooth and assms that it satisfies

(HI), (R2), (11), (RS), (H6) and (117) with constants independent of R. If, for

2 N Ne C.(3 ), uI e BUC(a ) is the viscosity solution of

u + PRI(txDu1 ) - * in 3
N

then

(6.34) lu 1 - + PHI (t,.,D)I e 2 r2 3 ( 0 1D#1 + ID 21)

where r 3 depends only on the constants related with HI by (H4), (HS), (11).

(b) Let H2 : 10,T] x ? x - N t satisfy the same hypotheses as H1 in (a). If

u2 e DUC(R ) is the viscosity solution of
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U2 + 0N2(t'XDu2 ) I in a

then

(6.35) In2  4 + P(N 1(t,* ,D4) + R 2 t, , 41) P p2r 4 0 + 10,41 + 1,2411)

where r is a constant, which depends only on the constants related with *1'O2 by M3),42

(3S),(7)

Proof. (a) Here, as usual, we only show

1(u1 -I + PH1 t*, ) 1C P 2 r~c 4 I 1D#11 + ID 24#1)

To this end, without loss of generality, we assume

and we define a N + a by

OWx (u I W - #(x) + PH 1(t~x,D41(x))) +

Since toi bounded, for every 6 > 0 there is a point x I *3?, such that

$( sup~ *x)-

Net hose~ c(a ) so that 0 < 1, IDXI 4 1, 1DI~ ( 1  and

define Y :r - R by

(6.37) f(x) -(x ON 24C~x)

Since Y 4 of f the support of 4 and

Y(x I ) >sup3 0(3)0+6

there is a point x 0 e I? such that

Y(x 0 ) )p Y(x) for every x e M

We claim that xO satisfies

(6.39) { (u 1010) - 41(x0) + 0R1(t,x0oD1(X 0))) - u 0 ) -4(X 0) + PH 1 (t'x19 D41(XO))

->sup (u I(x) - CO(x + Nt'1*X)

To see this observe that, in view of (6.36), we have



Iu I - * + on 1 (t,*))) ) i-- (ul(x 0) - *Cx 0 ) + pH I(t,x0 ,ID(x 0 )))
+

540

)lm (u - Ix + pHl(t~x0 , (x 0 ))) ) Elu I - pINlt,,D)) I

and thus (6.39).

Now since x0 6 R is a local maximum of x U
1
(X) - (x) + ORl(t,xD(x)) + 2S (x)

in view of (1.3), it is

uI(x 0 1 + PH(t,x0 ,D#lx0 -pDHllt,o,D)(x 0) -28DClx 0)) ( 0(x0 1

therefore

utlx 0) - *(x 0 ) + PHllt,x0,,I(x 0)) C

C P(HIlt,x 0 ,D#Cx 0 )) - Hllt,x 0 ,D#(x 0 ) - pD Ilt,.,Dblx 0 ) - 28DC(x)))

2
P (MIP{(C1 + N1 )(1 + ID#I + I D ) + 25)

where C1 ,M1  are given by (H4), (W7) respectively. Letting 8 4 0 above implies (6.36)

with

r3 - Hl(C 1 + M1 1

(b) Here we define

u(x) = (u2(x) - #(x) + PlH Ilt,x,D#(x)) + H 2 lt,x,Dlx))))

Since the proof is similar to the one of (a), we omit it.

Now we continue with the proof of Theorem 6.2 (b). In view of (6.33), (6.35) and the

-n
way that Hi  are chosen, we have

IPt u) + H 2)(t,-,u,D) r4(I + IDI + ID 2I)p +
0 1 2 4

2
+ 2 Y sup I n f(T,x,pJ - Hi(T, ,u(x),r

i-I (xt)e
IplezQ

Letting n 4 we obtain the result.

To prove (6.28) in the case that up is defined by (2.42) for

(6.40) F(tpv) = 32 (tp)J1(tp)V

we need to check the assumptions of Theorem 2.2 (a). The fact that F(t,p,v) e Cb
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and (F15) are immediate consequences of Propositions 1.7 and 1.8. Moreover, for every

C'b () let(top) e x ,arid u,v e C b  ( o

(tjp.,u~v = 32(t,pU)j1(tU}V

in view of the previous discussion, the only assumption we noe to check is (F16). To this

0,1 U
end, let u 6 Cbl(it ). it is easy to see, using the definitions, that J (t.p)u and

i 2(tp)j1(tO)u are viscosity solutions of the problems

U2 + 2(tx.DU2 ) J 1 (t,p)u and u I + H1(tx,0ul) u

respectively, where

Ul(txp) - R1 (t.x,J1 (t,0)U(x),p)

and

N2 (tx,p) - R2(t.X, 2(tO)J1(tP)ulx),p )

Moreover, by Propositions 1.6 and 1.8 (b), there is a constant A - A(IuI,IDul) such that

IDY(tp).U)I ,ID3 1(top u)l ED(tpUu)l IDJ 1 (t,p,U,u)I c A

it follows from Proposition 1.6 that

l*(t,p,u) - 1(t,,u,u)t 1C * 1(tp)u - jI(t,P.u)ul +

+ 9 sup - 1;2 (T.X,P) " - lxu(x),P)f

(x ,T)eQT

C p(L 2 13 2 (t,)J3 1 (t,Plu- ul +I l 1 1 (t,p)u- ul)

Finally Proposition 1.7 implies that

IF(tP,u) - i(t,P,u,u)l 4 p 2e(LI+L2) ((i 2 ) 2  sup - In2 (r,x,r,p)l +
(X(, re

+ L( 2 + u -t 1(ir,x,r,p)I)

IpINA "

IrI-R

2T(L2 L1),

where R - E (lug + VC 1 + C2))
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(a) The proof of (a) in almost identical with the proof (a) of Theorem 6.1 (a) with

the appropriate modifications, therefore we omit it here.

Remark 6.5. A remark analogous to Remark 6.2 applies to Theorem 6.2 too.
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